
 
 
 

Graphics Processing Unit-Accelerated Implementation of the Plane Wave 
Time Domain Algorithm 

 
 

Yang Liu 1, Vitaliy Lomakin 2, and Eric Michielssen 1  
 

1 Department of Electrical Engineering and Computer Science  
University of Michigan, Ann Arbor, MI 48105, USA 

liuyangz@umich.edu, emichiel@umich.edu  
 

2 Department of Electrical and Computer Engineering  
University of California, San Diego, CA 92093-0407, USA 

vitaliy@ece.ucsd.edu 
 
 
Abstract: A graphics processing unit (GPU) accelerated implementation of the multilevel plane wave 
time domain (PWTD) algorithm for rapidly evaluating transient electromagnetic fields generated by 
large-scale temporally bandlimited dipole constellations is presented. By porting the computationally 
most intensive stages of the multilevel PWTD algorithm onto a Tesla C2050 device, 20X speedups and 
56% - 70% memory reduction are achieved over a single thread serial implementation on a Dual-Core 
AMD Opteron 2220 SE.   
 
Keywords: plane wave time domain algorithm (PWTD), graphics processing unit (GPU), CUDA 
FORTRAN, CUFFT 
 
 

1. Introduction 
 

The multilevel plane wave time domain (PWTD) algorithm is a fast scheme that reduces the 
computational cost associated with the evaluation of transient electromagnetic fields produced by sN  
dipoles active for tN  time steps from  2

t sO N N  to  2logt s sO N N N  [1-2], and hence can be used to 
accelerate the classical marching on in time scheme for solving time domain integral equations pertinent 
to the analysis of scattering from and radiation by complex and large-scale structures. Unfortunately, their 
favorably computational complexity notwithstanding, the computational costs of serial PWTD 
implementations still impede their applicability to real-life problems. Parallelization of the multilevel 
PWTD algorithm has been demonstrated on CPU clusters for analysis of EMC problems [3]. Recently, 
graphics processing units (GPU), viz. multi-threaded manycore processors that perform ultra-fast 
floating-point operations, have been shown to favorably compete with CPUs for parallelizing a variety of 
computational schemes to analyze electromagnetic phenomena [4-7]. The use of GPUs was facilitated by 
the introduction of the Compute Unified Device Architecture (CUDA), which provides a framework for 
writing general purpose GPU codes and offers a great flexibility in accelerating many commonly 
encountered scientific computing tasks. CUDA has been further extended to be incorporated into various 
programming environments resulting in powerful and convenient programing tools, such as CUDA 
FORTRAN. This paper describes the first GPU-accelerated implementation of the multilevel PWTD 
algorithm. 

The paper is organized as follows. Formulations of direct and multilevel PWTD schemes for 

28th Annual Review of Progress in Applied Computational Electromagnetics April 10-14, 2012 - Columbus, Ohio  ©2012 ACES

49



evaluating transient electromagnetic fields from large-scale dipole constellations are briefly reviewed in 
Section 2. Their GPU implementations are described in Section 3. The performance of the 
GPU-accelerated PWTD implementation is discussed in Section 4. Conclusions of the paper are 
summarized in Section 5.      
 

2. Formulations 
 

A. Direct Scheme 

Consider a current  tJ r,  that consists of sN  dipoles 

      
1

sN

n n n
n

t f t 


  ˆJ r, r r u  (1) 

where the thn  dipole’s temporal signature  nf t  is assumed bandlimited to max  and quasi 
time-limited to 0 t T  . To numerically evaluate electric fields  tE r,  generated by this current, the 
time signature is discretized using time steps of size /t max    with a temporal oversampling factor 
5 20  , and is represented by its t tN T   samples as  

    
1

,

tN

n n j j
j

f t I T t


 . (2) 

Here  ,n j n tI f j   and    j tT t T t j    is a time-shifted local interpolant. For direct schemes, 
 T t  is chosen to be a th

np  order Lagrange interpolant that is time-limited to t n tt p    . The 
electromagnetic field at i tt i   along the thm  dipole due to all other dipoles can be expressed as 

      2 20

1
0

4

m n ts

m
n m n t

i cN
t j i n n

m m i n j m t
n n m j i p c n t

T t c
t I dt I c




    


          

  
     

  
  

r r /

, '
r r, r r /

ˆ' r r u
ˆ ˆu ,E r , u '

r r
   (3) 

where ,   denotes the standard inner product and    is the floor truncation function. The cost of 
computing (3) for 1,2,..., sm N  and 1,2,..., ti N  scales as  2

t sO N N . 
 

A. Multilevel PWTD Scheme 

The plane wave time domain (PWTD) algorithm permits computing interactions between dipoles in a 
group-wise manner, based on a transient plane wave decomposition of the radiated field. Assume that the 

thm  and thn  dipoles reside in two non-overlapping spheres   and '  with radius sR  centered 
about rc

  and 'rc
 ; let , ' , ' 'R r rc c

c cR       . In the PWTD scheme, the temporal basis function is 
chosen as the approximate prolate spheroidal (APS) interpolant [8], which not only is band-limited to 

s max  , but also approximately time limited to f t f tp t p     ; assuming that the signal is 
bandlimited, the interpolation error associated with the use of this function decreases exponentially with 
increasing fp . The time signature of the thn  dipole is broken into lN  consecutive bandlimited 
subsignals  

      
 1 1

l l t

t

N N lM
l

n n n j j
l l j l M

f t f t I P t
  

    ,  (4)              

where    j tP t P t j    is the time-shifted APS interpolant and l t tN M N ; tM  is chosen such that 
the duration of each subsignal    2 2, 't f t c sM p R R c    . Let  n l t,E r,  denote the electric fields 
in sphere '  generated by the thl  subsignal of dipole n  in sphere  . The field along dipole m  can 
be expressed as 

28th Annual Review of Progress in Applied Computational Electromagnetics April 10-14, 2012 - Columbus, Ohio  ©2012 ACES

50



 
   

     

0
, 2 2

0

3 2 1

, , , 
8

                        , , , ,   

K K T

m n l m pq m pq m
p q K

l
pq n pq n n

t w S t
c

t K S t f t










 



   

    

  , '

,

ˆˆ ˆu ,E r k u

ˆ ˆ ˆk k u

 (5) 

where pqw  and k̂ pq  are quadrature weights and points for integration on a unit sphere, 
i
 ,  1 2 3i  , ,  

denotes standard convolution, and the translator is 

        
2

0

, , 2 1 ,   for  
2 , ' , ' , ' , '

, '

ˆ ˆk k R
K

t
c c c c

c

c
t K P ct R P R t R c

R      






    . (6) 

Here  P   is the Legendre polynomial of degree  , 2 1s sK R c     with an oversampling factor 
 , and 

     , , c
o g o gS t t c    ,

ˆ ˆ ˆk v k v k r r  (7) 

where  ,o m n  and  ',g   . Equation (5) indicates that interactions between two sets of 
well-separated dipoles can be evaluated by a three stage scheme: 1. “Construct outgoing rays” by 
performing convolution 

1
  for all dipoles in the source sphere. 2. “Translate outgoing rays” to incoming 

rays in the observation sphere by performing convolution 
2
 . 3. “Project incoming rays” along dipoles in 

the observation sphere by performing convolution 
3
  and the leftmost summation.      

In the multilevel PWTD scheme, the computational domain is divided recursively into vN  levels 
[1-2]. Assume that the dipoles are located on a surface, there are 4 vN v  groups at level v , 1 2, , ..., vv N  
and each group interacts with  1O  other groups by PWTD. For level 1v  , the outgoing rays are 
constructed from level 1v   outgoing rays by spherical interpolation. Similarly, the incoming rays at 
level 1v   are added onto level 1v   incoming rays following spherical filtering. The interactions 
between group pairs that haven’t been accounted for by PWTD are evaluated by the direct scheme; this 
computation is referred to as “near-field calculation”; all other PWTD computations are termed : 
“far-field”. Upon fixing the size of level 1 groups to a fraction of the wavelength at frequency max , the 
computational complexity of the multilevel PWTD algorithm scales as  2logt s sO N N N . 

 
3. GPU Implementations 

 
To accelerate the multilevel PWTD scheme utilizing the computational power of a GPU, two of the 

computationally most intensive PWTD stages, viz. near-field calculation and field translation, are 
implemented using the CUDA FORTRAN programming interface on a Tesla C2050 device with 
515Gflops of double precision floating point performance and 3GB of memory. Other PWTD stages are 
run serially on an AMD Opteron 2220 SE at 2.79 GHz with 16GB of RAM. 

 
A. Near-field Calculation 

As discussed earlier, all PWTD near-field contributions are calculated by the direct scheme. To 
efficiently utilize the limited GPU memory, all near-field interpolation coefficients are calculated 
on-the-fly on the GPU while coordinates and directions of dipoles, sources and fields, as well as 
near-field interaction lists (NILs) are dynamically allocated in the global memory at every time step i . In 
GPU vernacular, this parallelization strategy is best described as “one block per group” and “one thread 
per observer”. Each block loops over the NIL of the corresponding group and updates fields due to related 
source groups. Shared memory is loaded with dipole coordinates and directions for each nearfield group 
pair. Fig. 1(a) shows speedups for the near-field calculation stage. Increasing the number of dipoles per 
group or the separation cutoff (equivalently the size of NIL) results in higher speedups due to larger 
number of threads/blocks and larger computational load for each thread.  

28th Annual Review of Progress in Applied Computational Electromagnetics April 10-14, 2012 - Columbus, Ohio  ©2012 ACES

51



  
B. Translation 

The translation stage is the computationally most intensive one of the multilevel PWTD algorithm and 
its GPU implementation plays a critical role in overall code performance. As mentioned earlier, 
translation is executed level by level. Interactions between each far-field group pair at level v  is 
calculated by (5). Convolution of outgoing rays with translators consists of three operations, viz. forward 
fast Fourier transformation (FFT) of outgoing rays, multiplication of outgoing rays by translators in the 
frequency domain, and backward FFTin the result to incoming rays. These operations are implemented on 
a GPU as follows: at  ti lM v , the outgoing rays, incoming rays, and translators at level v  are 
transferred into global memory. The CPU then loops over far-field pairs associated with the same 
translator and GPU kernels are launched for each group pair. Multiplying frequency domain translators by 
outgoing rays can be readily parallelized using a “one thread per data point” strategy while the forward 
and inverse FFT operations are implemented using the CUFFT library [9]. As a result of this strategy, 
  1 2 1K K   transforms are executed simultaneously on the GPU. Fig. 1(b) shows speedups for 
translation between one far-field pair with varying K  and translation length (far-field pair distance). 
Compared to FFTW-based CPU translations, larger K  leads to higher speedups because larger batches 
of FFTs are launched; however, larger transform length will not always increase the speedup because of 
implementation differences between the CUFFT and FFTW libraries.  

 

25 39 69 100 156
0

20

40

60

80

100

120

140

Sp
ee

du
ps

 

 

= 4 5γ .
= 5 0γ .
= 5 5γ .
= 6 0γ .

Number dipoles per groupof
 140 194 224 268 290 314 330 404 446 500 550 590 712  

0

10

20

30

40

50

60

70

Translation Length

Sp
ee

du
ps

 

 

K = 6
K = 12
K = 24

 
(a)                                         (b) 

 
 

 
 

4. Overall Performance 
 

The GPU-accelerated implementations of the direct and the multilevel PWTD schemes are tested by 
the following example. A large number of randomly oriented dipoles are distributed uniformly on a 
square plate with side length varying from 1.5m  2 500,sN   to 8.5m  80 000,sN  . The time 
signature of each dipole is bandlimited to 1GHzmaxf   and given by    2 26 2t

nf t e     with 
0 955ns..  The fields are computed for 500tN   time steps with 26 25 10 ns.t

   . The L2 norm 
error between the PWTD results and the exact results is controlled to 41 10 . Fig. 2(a) shows the 
computational time of the direct scheme and the multilevel PWTD scheme for CPU (AMD Opteron 2220 
SE) implementations and GPU (Tesla C2050) accelerated implementations. The speedups are 70X – 90X 
for the direct scheme and 20X for the multilevel PWTD scheme. Because of the lower speedups of the 

Fig. 1. Speedups of GPU (Tesla C2050) implementations over CPU (AMD Opteron 2220 SE) 
implementations for (a) Near-field calculation stage, (b) Translation between one far-field group pair. 

28th Annual Review of Progress in Applied Computational Electromagnetics April 10-14, 2012 - Columbus, Ohio  ©2012 ACES

52



28th Annual Review of Progress in Applied Computational Electromagnetics April 10-14, 2012 - Columbus, Ohio  ©2012 ACES

53



problems," in Antennas and Propagation Society International Symposium, 2004, pp. 4212-4215 
Vol. 4. 

[4] N. A. Gumerov and R. Duraiswami, "Fast multipole methods on graphics processors," Journal of 
Computational Physics, vol. 227, pp. 8290-8313, 2008. 

[5] M. Cwikla, J. Aronsson, and V. Okhmatovski, "Low-frequency MLFMA on graphics 
processors," Antennas and Wireless Propagation Letters, IEEE, vol. 9, pp. 8-11, 2010. 

[6] S. Li, B. Livshitz, and V. Lomakin, "Fast evaluation of Helmholtz potential on graphics 
processing units (GPUs)," Journal of Computational Physics, 2010. 

[7] S. Li, R. Chang, and V. Lomakin, "Fast Electromagnetic Integral Equation Solvers on Graphics 
Processing Units," GPU Computing Gems Jade Edition, p. 243, 2011. 

[8] J. Knab, "Interpolation of band-limited functions using the approximate prolate series (Corresp.)," 
Information Theory, IEEE Transactions on, vol. 25, pp. 717-720, 1979. 

[9]     C. NVIDIA, "CUFFT library 4.0," ed: NVIDIA, 2011. 

28th Annual Review of Progress in Applied Computational Electromagnetics April 10-14, 2012 - Columbus, Ohio  ©2012 ACES

54


	Main Menu
	Conference Agenda
	Welcome Message
	Conference Sponsors
	Conference Exhibitors
	--------------------------
	Previous Document
	Help
	Search
	Print

