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Abstract. We present a butterfly-compressed representation of the Hadamard-Babich (HB)
ansatz for the Green’s function of the high-frequency Helmholtz equation in smooth inhomogeneous
media. For a computational domain discretized with Nv discretization cells, the proposed algorithm
first solves and tabulates the phase and HB coefficients via eikonal and transport equations with ob-
servation points and point sources located at the Chebyshev nodes using a set of much coarser com-
putation grids, and then butterfly compresses the resulting HB interactions from all Nv cell centers to
each other. The overall CPU time and memory requirement scale as O(Nv log2 Nv) for any bounded
2D domains with arbitrary excitation sources. A direct extension of this scheme to bounded 3D

domains yields an O(N
4/3
v ) CPU complexity, which can be further reduced to quasi-linear complex-

ities with proposed remedies. The scheme can also efficiently handle scattering problems involving
inclusions in inhomogeneous media. Although the current construction of our HB integrator does not
accommodate caustics, the resulting HB integrator itself can be applied to certain sources, such as
concave-shaped sources, to produce caustic effects. Compared to finite-difference frequency-domain
(FDFD) methods, the proposed HB integrator is free of numerical dispersion and requires fewer dis-
cretization points per wavelength. As a result, it can solve wave-propagation problems well beyond
the capability of existing solvers. Remarkably, the proposed scheme can accurately model wave prop-
agation in 2D domains with 640 wavelengths per direction and in 3D domains with 54 wavelengths
per direction on a state-the-art supercomputer at Lawrence Berkeley National Laboratory.
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1. Introduction. We are interested in finding the solution to the high-frequency
Helmholtz equation with variable refractive index n(r) subject to an arbitrary source:

(1.1) [∆ + ω2n2(r)]u = −s(r) in Rd,

where

(1.2) ∆ =
d∑
i=1

∂2

∂x2
i

, r = [x1, x2, . . . , xd]
T ,

n(r) is the index of refraction (or the slowness function), s(r) is a generic source
function with compact support in a bounded domain V ⊂ Rd, ω is a large angular
frequency, d is the dimension, and the Sommerfeld radiation condition is imposed at
infinity. When the source is a point source, s(r) = δ(r, r0), the point-source solution
of (1.1) is the Green’s function G(r, r0) with source location r0. Assume that we are
given a volumetric discretization of the computational domain V with Nv degrees-of-
freedom (DOFs) so that the Shannon sampling principle, ωh = O(1), is obeyed, where
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h is the volumetric mesh size, implying that Nv = O(ωd). Accordingly, numerical
discretization of the Helmholtz equation (1.1) by a variety of methods, such as finite-
difference, finite-element, integral-equation, or hybrid asymptotic finite-element, gives
rise to an Nv × Nv linear system. Ideally, we desire a numerical scheme to have
two properties: having almost linear complexity, up to poly-logarithmic factors, in
both CPU time and memory storage units (in solving the linear system), and having
asymptotically uniform accuracy with respect to 1/ω (at least) as ω → ∞ while
respecting the Shannon sampling principle. However, so far, no method is available
enjoying the two properties simultaneously in the literature. Observing that the
Helmholtz solution can be written as

u(r) =

∫∫
V

G(r, r0)s(r0)dr0(1.3)

if the Green’s function G(r, r0) is known, we propose to first use the Hadamard-Babich
(HB) high-frequency asymptotic ansatz to compute the Green’s function, and then
use the fast butterfly algorithm to compress the HB integrator, and finally apply the
compressed integrator to the source function to obtain the desired Helmholtz solution.
As we will see, the resulting new numerical scheme enjoys the two desired properties
simultaneously.

Why to use the HB ansatz. High-frequency asymptotics typically assumes an
expansion series for the Green’s function in terms of the phase (or traveltime) and am-
plitude functions, which satisfy the eikonal and transport equations, respectively. The
Eulerian asymptotics solves these equations with partial differential equation (PDE)
solvers and utilizes the resulting asymptotic ingredients to construct the Green’s func-
tion for each point source. However, the usual geometrical-optics ansatz [3] does not
yield uniform accuracy near the source as ω → ∞ and poses difficulties when ini-
tializing the amplitudes. Recently, the HB ansatz [4] based Eulerian asymptotics has
been developed in [56] which yields a uniform asymptotic solution in the region of
space containing a point source but no other caustics. The eikonal and transport
equations for the HB coefficients are solved with high-order Lax-Friedrichs weighted
non-oscillatory (WENO) schemes which are initialized near the source point with
high-order Taylor expansions [56]. The resulting HB integrator is a highly accurate
approximation of the Green’s function for media with a smooth and analytic refractive
index n(r) that does not introduce caustics. That said, for a computational domain
discretized with Nv cells, the Eulerian asymptotics requires solving the eikonal and
transport equations Nv times for an arbitrary source function s(r) that can be nonzero
across the entire computational domain. Because such an Nv × Nv discretized HB
integrator is still prohibitively expensive to compute, a fast compressed representation
is called for. Therefore, we will develop low-rank representations using the Chebyshev
interpolation for these HB ingredients.

Why to use the butterfly algorithm. We consider an algebraic compres-
sion tool called butterfly [46, 39, 35, 34, 52], a multilevel numerical linear algebra
algorithm well-suited for representing highly oscillatory operators such as Fourier
transforms and integral operators [10, 67, 66], special function transforms [62, 9, 50],
free-space [47, 46, 40], numerical [37], and inverse [25, 38, 26, 27] Green’s functions for
Helmholtz and Maxwell’s equations. As the HB integrator consists of non-oscillatory
HB coefficient functions and oscillatory Hankel functions defined via non-oscillatory
phase functions, we show that the discretized HB integrator is butterfly compressible.
The proposed scheme first constructs low-rank representations for the phase function
and HB coefficients via solving the eikonal and transport equations with a set of coarse
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grids for a constant number of point sources located at the Chebyshev interpolation
nodes. Next, it leverages butterfly algorithms and its hierarchical extension, the hier-
archical off-diagonal butterfly (HODBF) matrix [38], to compress the HB integrator
for cell sizes proportional to the angular frequency, via sampling the phase and HB
coefficients in a manageable way. Once compressed, the HB integrator can be applied
to any source function as a simple matrix-vector multiplication. This framework is
also extended to handle a computational domain with sound-hard inclusion, where
an additional surface integral equation using the HB integrator is solved. We analyze
our proposed algorithm to validate that the CPU time and memory requirement for
most involved discretized integrators scale at most as O(Nv log2Nv). Moreover, this
scheme obeys the Shannon sampling principle, is free of dispersion errors due to the
asymptotic nature of the method, and requires much smaller numbers of cell points per
wavelength than finite-difference solvers, and it further has been distributed-memory
parallelized. As a result, it can solve wave propagation problems well beyond the
capability of existing FDFD solvers. Remarkably, the proposed scheme can accu-
rately model wave propagation in 2D domains with 640 wavelengths per direction,
and 3D domains with 54 wavelengths per direction on a state-the-art supercomputer
at Lawrence Berkeley National Lab.

1.1. Related works. To put our work into perspective, let us first point out that
in the high-frequency regime, the notion of convergence is different from the standard
numerical analysis. Because of pollution errors (numerical dispersions) [6], numerical
errors of standard methods for the Helmholtz equation (1.1) do not decay as ω →∞
if ωh is fixed, namely, the Shannon sampling principle is respected. Consequently, in
the high-frequency asymptotic regime, namely, ω → ∞, we seek numerical methods
which both converge asymptotically with respect to ω and obey the Shannon sampling
principle.

There are three popular classes of numerical methods for solving the variable co-
efficient Helmholtz (or Maxwell’s) equations: the differential-equation method such as
finite-difference [12, 51] or finite-element [5, 48] method, the volume-integral equation
(VIE) method [58, 68, 15], and the hybrid asymptotic finite-element based methods
[24, 49, 29, 20, 19, 31]. We consider the following three aspects.

Accuracy. The differential-equation method, for instance the finite-difference
frequency-domain (FDFD) method, leverages absorbing boundary conditions and
finite-difference stencils to form a sparse Nv ×Nv linear system, whose inverse gives
numerical Green’s functions. Given a uniform accuracy requirement for all frequen-
cies ω, pollution errors demand that differential-equation methods oversample the
numerical solution to mitigate the pollution effects, leading to large-scale systems
with sub-optimal DOFs to solve when ω → ∞, and the resulting CPU time and
memory storage units are sub-optimal with respect to the Shannon principle. On the
other hand, the VIE method [57] leverages volumetric equivalent sources and the ex-
act, free-space Green’s function to form a dense Nv ×Nv linear system. The solution
of the linear system yields the equivalent source densities. Although VIE is almost
free of numerical dispersion, the system solve is even more expensive than FDFD. The
hybrid asymptotic finite-element methods [24, 49, 29, 20, 19, 31] incorporate phase or
phase gradient information into the formulation, and the hybrid methods in [20, 19]
demonstrate almost linear complexity in CPU time and converge asymptotically as
1/
√
ω when ω → ∞ for 2-D problems. We refer to [19] for references on various ap-

proaches to eliminate or mitigate pollution effects. Our proposed approach is different
from the above three classes, and it is based on the uniform asymptotic HB ansatz
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and enjoys the following unique feature: given a uniform accuracy requirement for all
frequencies ω, the accuracy behaves as 1/ω (at least) asymptotically and shows no
apparent dispersion errors when ω →∞, as long as ωh is fixed.

Efficiency. Given CPU time and storage requirement scalable with respect to ω
by fixing ωh to be a constant, we would like to solve the linear system Nv × Nv in
O(Nv) time and O(Nv) memory storage, up to poly-logarithmic factors. As stated
in [19], standard sparse linear algebra algorithms based on nested dissection [22] and
multi-frontal methods [14] have a suboptimal complexity, and they are prohibitively
expensive memory-wise in dimension greater than two [13, 33, 2, 64, 7, 8]. As a
result, quasi-linear-cost preconditioners are developed, such as [16, 17, 59, 11, 63, 69],
among many others. In a most recent work [37], a sparse approximate multifrontal
factorization with butterfly compression for high-frequency wave equations has been
developed, and complexity analysis and numerical experiments demonstrate that it
enjoys O(Nv log2Nv) computation and O(Nv) memory complexity when applied to an
Nv×Nv sparse system arising from 3-D high-frequency Helmholtz problems. However,
most of these methods use low-order discretizations so that they require oversampling
to produce accurate solutions, thus resulting in suboptimal complexities with respect
to the frequency ω. Our proposed approach is also based on butterfly compression, but
it enjoys the following unique feature: the overall CPU time and memory requirement
scale as O(Nv log2Nv) when ω →∞ as long as ωh is fixed (no oversampling).

Accuracy and efficiency. As stated in [19], only a few references deal with
both accuracy and efficiency simultaneously. [61] develops a hybridizable discontinu-
ous Galerkin method coupled with the method of polarized traces, [70, 36] deal with
an integral version of the Helmholtz equation with inclusions by coupling with sparsi-
fication and a fast preconditioner, and [20, 19, 31] develop adaptive discretizations for
Helmholtz equations by learning the dominant wave directions. In our work, we also
consider an integral version of the Helmholtz equation for curved inclusions. Our pro-
posed approach for both cases of inclusion and no-inclusion enjoys both accuracy and
efficiency simultaneously in the sense that the overall CPU time and memory require-
ment scale as O(Nv log2Nv) and the accuracy behaves as 1/ω (at least) asymptotically
when ω →∞, as long as ωh is fixed (no oversampling).

Finally, we remark that a version of the butterfly algorithm [10] has been im-
plemented in fast Huygens sweeping methods for computing high-frequency Green’s
functions of point-source Helmholtz equations based on traditional geometrical optics
[44] and the HB ansatz [42], respectively. Our butterfly compressed HB integrator
proposed here is different from those in [44, 42, 54] in that we are treating arbitrary
sources rather than a single point source and we are using the hierarchical off-diagonal
butterfly (HODBF) algorithm [38], which is more efficient than the classical butterfly
algorithm [10] or hierarchical matrices [26] to compress the high-frequency interaction
matrix. We also mention in passing that the necessity of using butterfly compression
for fast computing high-frequency waves has been shown in [18].

1.2. Contents. In Section 2, we introduce the HB ansatz for the point-source
problem of Helmholtz equations. Direct computation of the HB integrator for ar-
bitrary sources is detailed in Section 3. Fast computation of the HB integrator for
arbitrary sources is described in Section 4. In Section 5, we show numerical results to
demonstrate the performance of the proposed scheme.

2. Hadamard-Babich Ansatz for Point Source. To solve equation (1.1)
asymptotically with a point source when ω →∞, Babich [4] used Hadamard’s method
to obtain the following Hankel-based ansatz so as to expand the solution u(r) =
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G(r, r0),

(2.1) ghb(r, r0) =

∞∑
s=0

vs(r, r0)fs−(d−2)/2(ω, τ),

where

(2.2) fq(ω, τ) = i

√
π

2
eiqπ

(
2τ

ω

)q
H(1)
q (ωτ).

Here H
(1)
q is the q-th Hankel function of the first kind, and the phase τ , more precisely

its square τ2, satisfies the eikonal-squared equation (2.3),

(2.3) |∇τ2|2 = 4τ2n2, τ2(r, r0)|r=r0 = 0,

which is equivalent to the usual form of the eikonal equation,

(2.4) |∇τ | = n, τ(r, r0)|r=r0 = 0.

We remark that two forms of eikonal equations as (2.3) and (2.4) are needed because
τ itself as a distance function near the source is not differentiable at the source but
τ2 is, as long as n is locally smooth [3, 60].

We call the above ansatz the Hadamard-Babich ansatz and the coefficients vs the
HB coefficients which are different from amplitude functions in the classical geomet-
rical optics.

The HB coefficients vs+1 in expansion (2.1) satisfy the recurrent system

(2.5) 4τn2 ∂vs+1

∂τ
+ vs+1

[
∆τ2 + 2n2(2s+ 2− d)

]
= ∆vs, s = −1, 0, 1, . . . ,

and v−1 ≡ 0, where the differentiation ∂
∂τ is performed along the ray departing from

r0. Assuming vs(r, r0) to be continuous in the neighborhood of r = r0, we get the
initial conditions for v0 at r = r0,

v0(r, r0)|r=r0 =
nd−2

0

2π(d−1)/2
, n0 = n(r0).(2.6)

If n(r) is smooth, then τ is smooth in the neighborhood of r0 except at the source
point itself, but τ2 is smooth in the source neighborhood, including the source itself. If
n(r) is analytic, it can be shown [4, 42] that the function v0(r, r0) will also be analytic
in r when r is in the neighborhood of r0; furthermore, vs+1(r, r0) are determined in
terms of v0 and τ so that vs+1 are analytic when v0 are analytic for s = 0, 1, . . ..

2.1. Assumption and essential estimates. In the following, we assume that
these functions τ2 and vs (s = 0, 1, 2, · · · ) are analytic in the computational domain
V for all source points r0 ∈ V , so that the HB ansatz is valid for all point sources
r0 ∈ V . This means that all these HB ingredients are smooth single-valued functions
in V for any point source in V . Although this is a strong assumption, it will serve as
a good starting point for many applications.

By the essence of asymptotics [32], the difference between the true Green’s func-
tion of (1.1) and the HB ansatz (2.1) can be written as

G(r, r0)− ghb(r, r0) = O(1/ω∞),(2.7)
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where the “error” term on the right-hand side means that the difference can be made
arbitrarily smooth for all r, as long as the HB ingredients τ2 and vs (s = 0, 1, · · · ) are
analytic.

Moreover, when |τ | ≤ A ≡ constant, the Hankel-based terms fq with q = N −
(d− 2)/2 have the following asymptotic forms for large ω [4],
(2.8)

fq(ω, τ) =


O
((

τ
ω

)q
(ωτ)

−1/2
)

= O(ω−q−1/2τ q−1/2), if ωτ ≥ A1 ≡ constant,

O (ln(ωτ) + 1) , if ωτ ≤ A1 and q = 0,

O
((

τ
ω

)q
(ωτ)

−q
)

= O(ω−2q), if ωτ ≤ A1 and q ≥ 1,

where N = 0, 1, 2, . . ., and both A and A1 are arbitrarily fixed positive constants.
In this article, we truncate the HB ansatz (2.1) to obtain a (N+1)-term expansion,

(2.9) g(r, r0) =

N∑
s=0

vs(r, r0)fs−(d−2)/2(ω, τ),

and we can estimate the truncation error asymptotically in ω by using the asymptotic
forms of fq in (2.8),

(2.10) ‖ghb(·, r0)− g(·, r0)‖L∞(V ) ≤ O
(

(1/ω)
(N+1− d−3

2 )
)

;

see a similar analysis in [19].
Now we estimate the difference of the following solution formulas,

utrue(r) =

∫∫
V

G(r, r0)s(r0)dr0 for r ∈ V,(2.11)

uhb(r) =

∫∫
V

g(r, r0)s(r0)dr0 for r ∈ V,(2.12)

where we have assumed that the source s is compactly supported and an appropriate
absorbing boundary condition has been used to truncate the entire space Rd to the
computational domain V . Accordingly, we have

‖utrue − uhb‖L∞(V ) ≤
∫∫

V

‖G(·, r0)− g(·, r0)‖L∞(V )|s(r0)|dr0

≤
∫∫

V

‖G(·, r0)− ghb(·, r0)‖L∞(V )|s(r0)|dr0

+

∫∫
V

‖ghb(·, r0)− g(·, r0)‖L∞(V )|s(r0)|dr0

≤ O
(

(1/ω)
(N+1− d−3

2 )
)
.(2.13)

This estimate is the foundation for our new numerical schemes, and further numerical
analysis is an ongoing work.

In what follows, we drop the subscript of u and by default refer to it as the HB
ansatz solution, and we will only consider two cases: N = 0 and N = 1, yielding the
first- and second-order asymptotic expansion, respectively.

2.2. Approximations of eikonals and HB coefficients near the source.
Evaluating (2.9) requires computation of the squared-phase function τ2 and the HB
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coefficient functions v0 and v1. In a neighborhood of the point source where the
function τ is single-valued, τ2, v0, and v1 can be computed by solving the eikonal
equation (2.4) and transport equations (2.5) with initial conditions v0 in (2.6) and
v1(r, r0)|r=r0 to be determined, and the numerical details have been given in [56].

To expedite our presentation, we summarize some numerical aspects in the follow-
ing subsections. One essential difficulty in computing the eikonal and HB coefficients
to high-order accuracy is how to initialize these quantities near the point source for
numerical PDE solvers, such as Lax-Friedrichs WENO schemes [30, 73, 72]. Because
initial conditions for the eikonal and transport equations are only specified at the
source point and high-order schemes need accurate initial values within a small neigh-
borhood of the source to start with, our analyticity assumptions allow us to extract
high-order approximations of eikonals and HB coefficients near the source. To do that,
we may carry out local Taylor expansions of these functions and further insert these
relations into related PDEs so that we may obtain some recursive relations to com-
pute these functions locally. Since such recursive relations actually provide (crude)
approximations to the HB ingredients which in turn may be used to construct the
Green’s function (in a very crude manner) in a large neighborhood, we illustrate how
to obtain such recursive relations in the following.

2.2.1. High-order factorization of eikonals. We have the following expan-
sion near the source point r0 (dropped in the expressions below) for squared τ and
n:

(2.14) τ2(r) ≈
PT∑
k=0

Tk(r), n2(r) ≈
PS∑
k=0

Sk(r),

where Tk(r) and Sk(r) are homogeneous polynomials of degree k in r, and PT and PS
denote the truncation order of τ2 and n2, respectively. Upon substituting (2.14) into
(2.3), we can determine Tk term-by-term by

T0 = 0, T1 = 0, T2(r) = S0r
2,(2.15)

(P − 1)S0TP =

P−2∑
k=1

SkTP−k −
1

4

P−2∑
k=2

∇Tk+1 · ∇TP−k+1, P ≥ 3.(2.16)

Since we will solve for τ in the eikonal equation (2.4) rather than τ2, we will take
the square root of (2.14) to obtain an approximate τ , which will serve as a high-order
approximation of the exact τ in numerically solving the eikonal equation (2.4).

2.2.2. High-order factorization of coefficients vs. Although vs are assumed
to be analytic near the source, we still need to obtain high-order approximations to
vs within a small neighborhood of the source so that high-order numerical schemes
can be initialized near the source. Therefore, we will expand the coefficients vs as
homogeneous polynomials of degree k in r as well.

The coefficient v0 can be expanded as

(2.17) v0 =

PB∑
k=0

Bk(r),

where Bk(r) are homogeneous polynomials of degree k in r. Upon substituting (2.17)
into (2.5), we can determine Bk term-by-term by

B0 =
nd−2

0

2π(d−1)/2
, B1 =

1

2S0

(
−1

2
B0∆T3 + dB0S1

)
,(2.18)
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2PS0BP = −
P−1∑
k=1

∇Bk · ∇TP+2−k −
1

2

P−1∑
k=0

Bk∆TP+2−k(2.19)

+d

P−1∑
k=0

BkSP−k, P ≥ 2.

Similarly, we expand v1 as

(2.20) v1 =

PC∑
k=0

Ck(r),

and obtain C0 and C1,

2S0C0 =
1

2
∆B2.,(2.21)

4S0C1 =
1

2
∆B3 −

1

2
∆T3 C0 − (2− d)S1 C0,(2.22)

and CP for P ≥ 2 by

2(P + 1)S0CP =
1

2
∆Bp+2 −

P−1∑
k=1

∇Ck · ∇TP+2−k −
1

2

P−1∑
k=0

Ck∆TP+2−k

−(2− d)

P−1∑
k=0

CkSP−k.(2.23)

To ensure the same order of accuracy for solving (2.3) and (2.5), the truncation
orders are chosen as PB = PS = PT − 2 = PC + 2. If the analytic function n varies
very slowly in a certain neighborhood of the point source that we are interested in
so that the resulting Taylor expansions for τ2, v0, and v1 are sufficiently accurate,
then we may use these Taylor expansions to compute the HB ingredients so as to
construct the Green’s function in this neighborhood. However, in most of situations,
we are interested in wave propagation in large domains, and we will use these local
Taylor expansions to initialize high-order Lax-Friedrichs WENO sweeping schemes;
the related details have been given in [56] which is briefly summarized here.

2.3. Efficient algorithms for computing eikonals and HB coefficients.
According to numerical analysis for PDEs, to obtain v1 with first-order accuracy,
we need a third-order accurate approximation of v0 and hence a fifth-order accurate
approximation of τ . The Lax-Friedrichs WENO schemes as illustrated in [56] can be
employed to solve the eikonal equation (2.3). To resolve the singularity at the source,
we use the factorization approach [53, 71, 21, 45] so that τ can be factored as

(2.24) τ = τ̃ τ̄ .

Here τ̃ is pre-determined analytically to capture the source singularity, and for in-
stance, we can choose τ̃(r, r0) as n(r0)|r − r0| or the square root of the expansion
(2.14). Hence τ̄ is the new unknown which is smooth at the source and satisfies the
factored eikonal equation

(2.25) |τ̃∇τ̄ + τ̄∇τ̃ | = n.
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Accordingly, high-order Lax-Friedrichs WENO schemes [30, 72, 65, 56] can be
applied to solve (2.25). In order to obtain a PT -th order accurate approximation of τ
on a mesh of size h0, τ̄ needs to be initialized in a neighborhood of size 2(PT − 1)h0

centered at the source, and these initial values will be fixed during the iterations. In
the computation, we will take PT = 6 to obtain τ .

After obtaining a high-order approximation for τ , we apply Lax-Friedrichs WENO
schemes to solve transport equations (2.5) as illustrated in [56]. When s = −1, v0

will be initialized as (2.17) in a neighborhood of size 2(PB − 1)h0 centered at the
source and these values will be fixed during iterations; at other points, high-order
Lax-Friedrichs WENO-based schemes are used to update v0. Similarly, when s = 0,
v1 is then initialized as (2.20) in a neighborhood of size 2(PC − 1)h0 centered at the
source and these values will be fixed during iterations; the values at other points for
v1 will be updated using the high-order Lax-Friedrichs WENO-based schemes.

To analyze the complexity of these numerical schemes for computing these HB
ingredients, we assume that the d-dimensional computational domain is partitioned
into a finite-difference mesh of Nd

W points with NW sampling points in each direc-
tion. Since these high-order Lax-Friedrichs WENO-based schemes are iterative by
nature, we may assume that these high-order schemes have a superlinear complex-
ity as analyzed [42], and hence the computational cost for these HB ingredients is
O(Nd

W logNW ) in general.
Nevertheless, we emphasize that since these HB ingredients are independent of the

angular frequency ω, the above complexity is for computing the HB ingredients only
and consequently is not directly related to computing wave fields, and we can use very
coarse meshes to compute these quantities. Moreover, once they are computed, these
ingredients can be compressed into low-rank representations and reused for different
frequencies as shown in Section 4.1.

3. Direct Computation of Hadamard-Babich Integrator for Arbitrary
Source. Considering equation (1.1) in a spatial domain V = [0, 1]d, we can apply the
HB ansatz to compute the wave field in V due to an arbitrary source function s(r).
We consider two situations: domains without inclusion and domains with inclusion.

3.1. Domain with no inclusion. When no inclusion is present, the field u(r)
can be expressed as

u(r) =

∫∫
V

g(r, r0)s(r0)dr0,(3.1)

where the Green’s function g(r, r0) is given in equation (2.9). We call this the
Hadamard-Babich integrator.

To numerically compute (3.1), the domain is discretized into Nv regular cells
with cell size h, where h is typically a constant fraction of the ω-dependent wave-
length. The source function can be discretized with local volume basis functions
s(r) =

∑
j s(rj)h

dbvj (r), where the basis function bvj (r) is nonzero only inside the
source cell cj with center rj :

bvj (r) =

{
1
hd

if r ∈ cj ,
0 otherwise.

(3.2)

Note that for a point source located inside cell ci, the source function is approximated
with s(rj) = δij/h

d. The field at the center of each cell u(ri) can be computed as

U = Kv2vI,(3.3)
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where I denotes a vector of length Nv that collects s(rj)h
d, U denotes a vector that

collects u(ri), and Kv2v
ij = g(ri, rj) for i 6= j. The self term Kv2v

ii can be computed
analytically by integrating the free space Green’s function over the source cell, where
the index of refraction n is taken to be constant; see Appendix A for more details.

The naive computation of all non-diagonal terms of Kv2v requires solving the
eikonal equation (2.4) and transport equations (2.5) forNv times to tabulate τ2(ri, rj),
v0(ri, rj) and v1(ri, rj), requiring at least O(N2

v ) CPU time and memory. Moreover,
the assembly and application of Kv2v also require O(N2

v ) time and memory.
We remark in passing that when the medium is homogeneous, the HB integrator

(3.1) is exact since the HB ansatz (2.9) yields the exact Green’s function in this case;
when the medium is inhomogeneous and smooth without inducing caustics, the HB
integrator (3.1) is accurate in the asymptotic order O(1/ω∞) without truncating the

ansatz (2.9), and it is accurate in the asymptotic orderO(1/ω(2− d−3
2 )) when truncating

the ansatz (2.9) up to the first two terms. Detailed numerical analysis on this is an
ongoing work.

3.2. Domain with sound hard inclusion. For simplicity, this subsection only
considers 2D domains with curve inclusion; however the proposed scheme can be
trivially extended to 3D domains with surface inclusion. Considering a sound hard
curve denoted by C, the source function will generate an incident field uinc(r) that
induces an equivalent source p(r) on C, which in turn generates a scattered field
usca(r). More specifically, we have

uinc(r) :=

∫∫
V

g(r, r0)s(r0)dr0, r ∈ C,(3.4)

usca(r) :=

∫
C

g(r, r0)p(r0)dr0, r ∈ C or V.(3.5)

Here the equivalent source p can be solved by the following integral equation:

uinc(r) = −usca(r), r ∈ C.(3.6)

To numerically solve (3.6) and compute the total field u = uinc + usca in V , the
domain V is discretized with Nv cells with cell size h. After discretization of the
inclusion into Ns line segments with length wi for i = 1, . . . , Ns and enforcement of
(3.6) at segment centers, we solve a linear system

Ks2sP = U inc(3.7)

with

Ks2s
ij =

{
−wi

4 (1 + i 2
π (log(

γωn(rsi )wi
4 − 1))) if i = j,

−g(rsi , r
s
j)wj otherwise,

(3.8)

where γ is the Euler constant, U inc
i = uinc(rsi ) and Pi = p(rsi ) with rsi denoting

segment centers. The right-hand-side (RHS) in (3.7) is computed by

U inc = Kv2sI,(3.9)

where I is the same as that in (3.3), and the discretized volume-to-surface operator
is Kv2s

ij = g(rsi , rj). Here the source function does not overlap with the curve.
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Once the equivalent source p(r) is obtained, the scattered field at any point r of
the computational domain is computed using (3.5),

U sca = Ks2vP.(3.10)

Here U sca
i = usca(ri) with ri being the center of cell i, and Ks2v

ij = g(ri, r
s
j)wj which

can be directly calculated from the transpose of Kv2s. Combining (3.3), (3.7), (3.9)
and (3.10), the total fields at the cell centers can be expressed as

U = (Kv2v +Ks2v
(
Ks2s

)−1
Kv2s)I.(3.11)

As a typical curve in 2D requires Ns = N
1/2
v discretization segments, the naive

computation of Kv2s and Ks2s requires solving the eikonal equation (2.4) and trans-
port equations (2.5) for Ns times. In addition, the computation of Kv2s, Ks2s, and(
Ks2s

)−1
requires O(N

3/2
v ) time and memory. Overall, the computation of (3.11) is

still O(N2
v ) dominated by the computation of Kv2v.

4. Fast Computation of Hadamard-Babich Integrator for Arbitrary
Source. Here we propose a quasi-linear complexity algorithm for the computation
of (3.3) and (3.11). The proposed algorithm leverages the low-rank representation
of the squared phase function τ2 and HB coefficient functions v0 and v1 to avoid
solving eikonal and transport equations for all point sources. Once these low-rank
representations are obtained, the discretized volume-to-volume, volume-to-surface,
and surface-to-surface operators are compressed using butterfly algorithms and their
hierarchical extensions.

4.1. Low-rank Representation of the Phase and HB Coefficients. Since
we have assumed that τ2, v0 and v1 are analytic, they permit low-rank representations
as shown in [42, 41, 43, 55]. Letting f = τ2, v0 and v1, respectively, we consider the
following analytical low-rank representation using the Chebyshev interpolation,

f(r, r0) ≈
NI∑
i=1

NI∑
j=1

Ti(r)f(rci , r
c
j)Tj(r0).(4.1)

Let nI denote order of the Chebyshev interpolation and rci for i = 1, . . . , NI with
NI = ndI be the Chebyshev nodes (i.e., d-dimensional Chebyshev sampling of the
domain V = [0, 1]d). Accordingly, we define the Lagrange interpolants Ti(r), where

Ti(r) =

d∏
s=1

li(rs) =

d∏
s=1

∏
1≤k≤nI
k 6=i

rs − rcsk
rcsi − rcsk

,(4.2)

r = [r1, . . . , rd], and rci = [rc1i, . . . , r
c
di].

In (4.1), the set of function samples {f(rci , r
c
j)} of cardinality N2

I requires solving
the eikonal and transport equations via the Lax-Friedrichs WENO schemes with NI
point sources located at rcj , as explained in Section 2. More specifically, for each

Chebyshev node rcj , we create a grid with mesh size h0 and grid points r0
i for i =

1, . . . , 1/hd0 that are aligned with the point source at rcj . In other words, the grid covers
the computation domain V and its ghost regions, and has one grid point collocated
with rcj . This gives rise to solutions f(r0

i , r
c
j). For each rci , we compute f(rci , r

c
j) with
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Grid in WENO

scheme

Computation 

domain

Chebyshev nodes

Cubic interpolation nodes

Fig. 4.1: The computation of f(rci , r
c
j) in a 2D domain (shown as the green area) with

f = τ2, v0, v1. Here rci , i = 1, . . . , NI denote the Chebyshev nodes with NI = 52 (the
black dots). Two instances of rcj are shown: for each instance, a fast sweeping method

with a grid size h0, grid points r0
i and a point source collocated at one Chebyshev

node (the red dot) is used to compute f(r0
i , r

c
j). For each rci , i 6= j (the yellow dots),

f(rci , r
c
j) is computed via cubic interpolation from the grid points r0

i (the blue dots).

i 6= j from a local cubic interpolation using data points f(r0
i , r

c
j). See Figure 4.1 for

a 2D example with two point sources (in red dots).
Once the set {f(rci , r

c
j)} is obtained, the computation of f(r, r0) for any point

pair (r, r0) requires O(N2
I ) = O(n2d

I ) time. We can assume NI to be constant as
typically nI < 15. In addition, we can leverage a blocked version of (4.1) to further
improve its computational efficiency. Consider an m× n block F with Fij = f(ri, rj)
for arbitrary lists of n source points rj and m observation points ri. The block F can
be computed as

F ≈ T oF cT s.(4.3)

Here, T oij = Tj(ri), T
s
ij = Ti(rj), and F ci,j = f(rci , r

c
j). By using this blocked form,

repetitive computation of the interpolants T o and T s is avoided, and high-performance
BLAS libraries can be used. As a result, this requires O(min(m,n)N2

I +mnNI) time
using (4.3) as opposed to O(mnN2

I ) using (4.1).
One may attempt to compute F for all entries of Kv2v (and similarly for Ks2v,

Kv2s and Ks2s), but this leads to O(N2
vNI) computational time. As we will see

next, we propose the butterfly algorithm for constructing a compressed representa-
tion of Kv2v and the other discretized operators, requiring only a total of mn =
O(Nv log2Nv) entries in (4.3).

4.2. Butterfly Representation of the Discretized Integral Operators.
The butterfly algorithm exploits the fact that judiciously selected submatrices of the
discretized operators Kv2v, Ks2v, Kv2s and Ks2s are low-rank compressible, despite
of the full rankness of these operators.

The algorithm first recursively subdivides the geometry point sets associated with
the rows and columns of these operators into two subsets of approximately equal sizes,
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using such as k-dimensional (K-D) tree clustering algorithms, until the subsets contain
a predefined number of points. For the Nv cell centroids in the computational domain,
the procedure generates a complete binary tree THv of Lv levels with root level 0 and
leaf level Lv. Each node τ at level l is an index set τ ⊂ {1, . . . , Nv}. Similarly for the
Ns segment centers for the inclusion, the procedure generates a complete binary tree
THs of Ls levels. In both trees, a non-leaf node τ at level l has two children τ1 and
τ2, where τ = τ1 ∪ τ2 and τ1 ∩ τ2 = ∅. For a non-root node τ , its parent is denoted pτ .

The butterfly representation of a matrix requires binary trees To and Ts with L
levels for the row and column indices, respectively, which are defined for the integral
operators as follows:

• Kv2v: For any two siblings τ1 and τ2 at level l of THv , let o = τ1 and s = τ2.
Kv2v(o, s) is compressed as a butterfly with L = Lv − l levels. Let To and
Ts be the subtrees of THv rooted at o and s, respectively. As a result, there
are 2l butterfly representations at each level l = 1, . . . , Lv. The 2Lv blocks
Kv2v(τ, τ) for node τ at level l = Lv are kept as dense blocks. Such a
representation is called the hierarchically off-diagonal butterfly (HODBF)
representation [38].

• Ks2s: For any two siblings τ1 and τ2 at level l of THs , let o = τ1 and s = τ2.
Ks2s(o, s) is compressed as a butterfly with L = Ls − l levels. Let To and Ts
be the subtrees of THs rooted at o and s, respectively. Similar to Kv2v, we
seek a HODBF representation of Ks2s.

• Ks2v (or Kv2s): Let o and s be the roots of THv and THs , respectively.
Ks2v(o, s) = Ks2v is compressed as a single butterfly with L = min{Lv, Ls}
levels. Let To = THv and Ts = THs .

4.2.1. Butterfly algorithm. The L-level butterfly representation of the inte-
gral operator K(o, s) ∈ Cm×n (superscripts of K are dropped) requires the comple-
mentary low-rank property: at any level 0 ≤ l ≤ L, for any node τ at level l of To
and any node ν at level L− l of Ts, the subblock K(τ, ν) is numerically low-rank with
rank rτ,ν bounded by a small number r called the butterfly rank. We will comment
on the butterfly rank for the three integral operators in subsections 4.2.2, 4.2.3, and
4.2.4, respectively.

For any subblock K(τ, ν), the complementary low-rank property permits a low-
rank representation using for instance interpolative decomposition (ID) as

(4.4) K(τ, ν) ≈ K(τ, ν̄)Vτ,ν ,

where the skeleton matrix K(τ, ν̄) contains rτ,ν skeleton columns indexed by ν̄, and
the interpolation matrix Vτ,ν has bounded entries. The ID can be computed via for
instance rank-revealing QR decomposition with a relative tolerance tol. There are
several equivalent butterfly representations in literature [39, 34, 35, 52] and here we
briefly describe the so-called column-wise butterfly representation [39].

At level l = 0, the interpolation matrices Vτ,ν are explicitly formed. While at
level l > 0, they are represented in a nested fashion. To see this, consider a node
pair (τ, ν) at level l > 0 and let ν1, ν2 and pτ be the children and parent of ν and τ ,
respectively. From (4.4), we have

K(τ, ν) =
[
K(τ, ν1) K(τ, ν2)

]
≈
[
K(τ, ν̄1) K(τ, ν̄2)

] [Vpτ ,ν1
Vpτ ,ν2

]
(4.5)
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≈ K(τ, ν̄)Wτ,ν

[
Vpτ ,ν1

Vpτ ,ν2

]
.(4.6)

Here Wτ,ν and ν̄ are the interpolation matrix and skeleton columns from the ID of
[K(τ, ν̄1),K(τ, ν̄2)], respectively. This allows representing Vτ,ν as

(4.7) Vτ,ν = Wτ,ν

[
Vpτ ,ν1

Vpτ ,ν2

]
.

We will refer to Wτ,ν as the transfer matrices in the rest of this paper. We note that
the computation of interpolation matrices Vτ,ν at level l = 0 and transfer matrices
Wτ,ν at level 0 < l < L does not require the ID on the full subblocks K(τ, ν) and
[K(τ, ν̄1),K(τ, ν̄2)], as this immediately leads to an O(mn) compression complexity
at level l = 0.

Instead, we can select a number of O(rτ,ν) proxy rows τ̂ ⊂ τ to compute Vτ,ν and
Wτ,ν via ID as:

K(τ̂ , ν) ≈ K(τ̂ , ν̄)Vτ,ν , l = 0,(4.8) [
K(τ̂ , ν̄1) K(τ̂ , ν̄2)

]
≈ K(τ̂ , ν̄)Wτ,ν , l > 0.(4.9)

When l = L and τ̂ = τ , no proxy rows are needed. We will discuss the choice of the
proxy rows in more details in subsections 4.2.2, 4.2.3, and 4.2.4.

With all the interpolation and transfer matrices computed, the butterfly repre-
sentation of K(o, s) is:

K(o, s) ≈ KLWLWL−1 . . .W 1V 0.(4.10)

Let ν1, ν2, . . . , ν2L−l denote the nodes at level L − l of Ts, and τ1, τ2, . . . , τ2l denote
the nodes at level l of To. The interpolation factor V 0, the transfer factors W l for
l = 1, . . ., L, and the skeleton factor KL are:

V 0 = diag(Vτ,ν1 , . . . , Vτ,ν2L ), (τ, νi) at level l = 0,(4.11)

KL = diag(K(τ1, ν̄), . . . ,K(τ2L , ν̄)), (τi, ν) at level l = L,(4.12)

W l = diag(Wτ1, . . . ,Wτ2l−1), l = 1, . . . , L,(4.13)

Wτi =

[
diag(Wτ1

i ,ν1
, . . . ,Wτ1

i ,ν2L−l
)

diag(Wτ2
i ,ν1

, . . . ,Wτ2
i ,ν2L−l

)

]
, (τ

{1,2}
i , νi) at level l,(4.14)

where τ1
i and τ2

i denote the children of τi. Note that V 0 and KL contain 2L diag-
onal blocks each with O(rτν) nonzeros, and W l contains 2L blocks Wτ,ν each with
O(r2

τν) nonzeros. The construction of these blocks via (4.8) at each level l requires
the computation of O(n) submatrices (i.e., the left-hand side (LHS) of (4.8)) of sizes
O(rτ,ν)×O(rτ,ν). From the discussion of (4.3) in subsection 4.1, each submatrix can
be computed in O(rτ,νN

2
I + r2

τ,νNI) time, which is time-wise optimal assuming NI
constant. If maxτ,ν rτν is O(1), it is immediately clear that the butterfly representa-
tion (IDs and matrix entry computation) requires O(n log n) memory and CPU time.
We will see that this is not the case for any of Kv2v, Ks2v and Ks2s, but quasi-linear
complexities can still be attained for most of these operators.

In what follows, we discuss the rank estimate, proxy row selection, and computa-
tional complexity for each of the three discretized integral operators Kv2v, Ks2v and
Ks2s.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.2: Top: illustration of the butterfly compression of 4 levels for one top-level
off-diagonal block of HODBF representation of Kv2v in a 2D computational domain.
The subdomains at levels l = 0, 1, 2, 3 ((a)-(d)) are denoted by the vertical and hor-
izontal lines. One subdomain pair (τ, ν) at each level with non-constant rank rτ,ν is
shown in the shaded areas (left: τ , right: ν). The green dots correspond to skeleton
columns (cell centroids) for the ID computation, and the red and yellow dots corre-
spond to uniformly sampled and nearest neighboring proxy rows (cell centroids) used
to compute the ID. Note that the unused cell centroids at each stage are not plotted.
Bottom: illustration of the butterfly compression with 5 levels for Ks2v involving a
circular inclusion in a 2D computational domain. The subdomains and arcs at levels
l = 0, 1, 2, 3 ((e)-(h)) are denoted by the vertical/horizontal lines and dashed lines,
respectively. One subdomain-arc pair (τ, ν) at each level with non-constant rank rτ,ν
is shown with the shaded areas for the subdomain and curves ending with red dashed
lines for the arc. The green dots correspond to skeleton columns (line segments) for
the ID computation, and the red and yellow dots correspond to uniformly sampled
and nearest neighboring proxy rows (cell centroids) used to compute the ID.

4.2.2. Computation of Kv2v. Consider the top level off-diagonal block of its
HODBF representation, Kv2v(o, s) with o and s being the children of the root of THv ,
and sizes m = n = Nv/2. This permits a butterfly representation with L = Lv − 1
levels. Letting lm = L/2 denote the middle butterfly level, we can show that among

the O(Nv) subblocks K(τ, ν) at each level l, there are O(2|l−lm|/dN
(d−1)/2d
v ) sub-

blocks representing interactions between adjacent or close-by geometry subdomains,
where d = 2 or 3 denotes the problem dimension. Their ranks scale as rτ,ν =

O(2−|l−lm|/dN
(d−1)/2d
v ) dominated by the interface DOFs between the two compu-

tational subdomains. Each of these non-constant rank subblocks requires O(r2
τ,ν)

storage and matrix entry computation, and O(r3
τ,ν) ID cost. Thus, they require

∑
l

r2
τ,νO(2|l−lm|/dN (d−1)/2d

v ) = O(N3(d−1)/2d
v ) ≤ O(Nv) storage
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and ∑
l

r3
τ,νO(2|l−lm|/dN (d−1)/2d

v ) = O(N2(d−1)/d
v ) CPU time

for the interpolation and transfer matrices. Specifically, the CPU time is O(Nv) when

d = 2 and O(N
4/3
v ) when d = 3. The rest of the subblocks essentially has rτ,ν = O(1)

and requires O(Nv logNv) CPU time and memory based on the DOF analysis in [47].
Note that the sub-optimal CPU complexity for d = 3 can be improved by considering
strong-admissible hierarchical matrices [26] to keep butterfly rank constant, or con-
sidering alternatives to ID, e.g., analytical interpolation schemes such as (4.1) or the
one in [10], which brings the O(r3

τ,ν) CPU cost per block back to O(r2
τ,ν). However,

we will not implement the analytical interpolation-based butterfly representation in
this article due to the large prefactors in these schemes and will leave that as a future
work.

As an example, Figure 4.2 (top) shows a 2D computational domain with a parti-
tioning tree THv with Lv = 5 levels. Kv2v(o, s) with o and s being the children of the
root THv (i.e., the left and right half of the domain) is compressed as a 4-level butter-
fly. Figure 4.2(a)-(d) shows the subdomain pairs at levels l = 0, 1, 2, 3, respectively.
For each level, one subdomain pair with non-constant interaction rank is shown in
grey. The cell centroids in green represent the skeleton columns ν̄, which mainly lie
on the subdomain interface.

As mentioned above, the computation of ν̄ is performed via (4.8) with proxy rows.
Specifically, consider (τ, ν) at level 0 < l < L (with l = 0, L being similar). Let ni
denote the nearest neighboring centroids i (e.g., all centroids that are within a 10h
distance of ri), and let fτ denote the χ|ν̄1 ∪ ν̄2| uniformly selected centroids near the
boundary of subdomain τ with an oversampling parameter χ. We choose the proxy
rows as

τ̂ = (∪i∈ν̄1∪ν̄2ni) ∩ τ ∪ fτ .(4.15)

For example, Figure 4.2(a)-(d) shows the nearest neighboring proxy rows in yellow
and the uniform proxy rows in red.

Because of the above rank estimate and proxy row selection scheme, O(Nv logNv)
CPU time and memory complexities can be achieved for the top-level off-diagonal
block of the HODBF. This leads to an O(Nv log2Nv) complexity for the overall
HODBF construction.

4.2.3. Computation of Ks2v. Consider Ks2v between a 2D computational do-
main with Nv cells and a curve inclusion with Ns discretization segments with typi-

cally Ns = N
1/2
v . Ks2v is compressed as a butterfly with L = min{Lv, Ls} levels. For

simplicity we assume that Ls = Lv, each leaf node in Ts contains O(1) columns, and
each leaf node in Tv contains O(Nv/Ns) = O(Ns) rows. Just like the Kv2v operator,
we need to identify the subblocks with non-constant ranks rτ,ν . We first identify a
level lm at which the side length of τ is on the same order as the length of ν. From

N
1/2
s 2(L−lm)/2 = Ns2

lm , where the LHS and right-hand-side (RHS) represent lengths
of τ and ν at level lm, respectively, we have lm = O( 2L

3 ). For each level l ≤ lm, we can
show that there are O(2−lNs) subblocks, out of the total of O(Ns) subblocks, repre-
senting interactions between a node ν of Ts fully contained in or close to some node τ
of To. These subblocks have ranks at most rτ,ν = O(2l) (i.e., the length of ν). These

non-constant rank subblocks require
∑
l≤lm r

2
τ,νO(2−lNs) = O(N

5/3
s ) = O(N

5/6
v ) stor-

age and matrix entry computation, and
∑
l≤lm r

3
τ,νO(2−lNs) = O(N

7/3
s ) = O(N

7/6
v )

16



CPU time for the IDs. On the other hand, for each level l > lm, we can show that
there are O(2l/2) subblocks, out of the total of O(Ns) subblocks, representing inter-
actions between a node τ of To intersecting with some node ν of Ts. These subblocks
have ranks at most rτ,ν = O(2l/2Ns) (i.e., the side length of τ). These non-constant

rank subblocks again require O(N
5/6
v ) storage and matrix entry computation, and

O(N
7/6
v ) CPU time for the IDs. Just like Kv2v in 3D, we can use analytical interpo-

lation schemes to reduce O(N
7/6
v ) to O(N

5/6
v ). The rest of the subblocks essentially

have rτ,ν = O(1) based on the DOF analysis in [47], and their CPU and memory
complexities are dominated by l = L, which scale as O(Nv).

As an example, Figure 4.2 (bottom) shows the compression of Ks2v representing
interaction between a 2D computational domain and a circle inclusion, with L =
Ls = 5 levels. Figure 4.2(e)-(h) shows the subdomain-arc pairs at levels l = 0, 1, 2, 3
respectively. For each level, one subdomain-arc pair with non-constant interaction
rank is shown in grey for the subdomain and red for the arc. The discretization line
segments in green on the curve represent the skeleton columns ν̄, which mainly lie on
the intersection of the arc with the subdomain. Note that for l = 0, 1, the arc is fully
contained in the subdomain, and the green points overlap with the red arc; for l = 2, 3,
the subdomain intersects with the arc. Just like the Kv2v operator, proxy rows in
the subdomains are chosen by (4.15), except that fτ is a set of χ|ν̄1 ∪ ν̄2| uniformly
distributed centroids in the subdomains. In Figure 4.2(e)-(h), the nearest neighboring
and uniform proxy rows (centroids) are shown in yellow and red, respectively.

4.2.4. Computation of Ks2s and its inverse. Just like Kv2v, we seek a
HODBF representation of Ks2s for d = 2. Considering a top-level off-diagonal block
Ks2s(o, s), it has been shown in [40] that its butterfly rank scales as O(logNs) and
its CPU time and memory scales as O(Ns logNs). As a result, the HODBF repre-

sentation of Ks2s requires O(Ns log2Ns) = O(N
1/2
v log2Nv) CPU time and storage

units.
Once constructed, the inverse of the HODBF compressed Ks2s can be computed

using algorithms described in [38, 37] leveraging sketching-based butterfly construc-

tion algorithms [39]. For Ks2s, the HODBF inversion requires O(N
3/2
s logNs) =

O(N
3/4
v logNv) based on the analysis in [38].
We summarize the algorithmic complexities in subsections 4.2.2, 4.2.3, and 4.2.4.

The computation of Kv2v requires O(Nv log2Nv) memory for d = 2, 3, O(Nv log2Nv)

time for d = 2, and O(N
4/3
v ) time for d = 3 (the latter becoming quasi-linear if

analytical interpolation rather than ID-based butterfly algorithms are used or strong-
admissible hierarchical matrices are used). The computation of Ks2v for d = 2 re-

quires O(Nv) memory and O(N
7/6
v ) CPU time (O(Nv) attainable if the analytical

interpolation is used). The computation and inversion of Ks2s for d = 2 require

O(N
1/2
v log2Nv) memory and O(N

3/4
v logNv) CPU time. Therefore, the overall com-

plexities of the proposed butterfly compressed HB integrator scale as O(Nv log2Nv).

4.3. Expected convergence behavior. Although a complete numerical analy-
sis of our new method is an ongoing work, we sketch the expected convergence behavior
of the algorithm.

Our new algorithm has three principal sources of numerical errors: the first source
is due to numerical computation of HB ingredients, such as τ , v0 and v1; the second one
is due to truncating the infinite asymptotic series to keep only the leading or the first
two terms: N = 0 or N = 1 in (2.9); the third one is due to the butterfly compression.
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Therefore, the overall error of our HB integrator will be roughly controlled by the
above three sources of errors.

To start with, we consider the first source of errors. According to equation (2.5),
v1 depends on ∆v0 (the Laplacian of v0) and ∆τ . To have first-order accurate v1

(which is a minimum requirement for our current setup of the new algorithm), we
need at least first-order accurate ∆v0 and ∆τ . To have first-order ∆v0, v0 itself must
be computed to third-order accuracy so that it can be numerically differentiated twice
to yield first-order accurate Laplacian ∆v0. To have third-order accurate v0, ∆τ (the
Laplacian of τ) must be computed to third-order accuracy according to equation (2.5)
again, which in turn implies that τ itself must be computed to fifth-order accuracy.
Consequently, we have chosen to apply the fifth-order Lax-Friedrichs WENO scheme
to compute τ , v0 and v1 in our current implementation so that the computed τ ,
v0 and v1 will have fifth-, third-, and first-order accuracy, respectively. We denote
the computational errors of these ingredients as O(hβ0 ), where h0 is the mesh size,
and β is the order of accuracy: β = 1, 3, 5, respectively. Since these ingredients
are independent of the frequency parameter ω, they can be computed just once and
re-used for many different frequencies as explained below.

Now we consider the second source of errors. According to equation (2.9), when
we keep the leading-order term of the HB ansatz, we are expecting the first-order

asymptotic convergence in the form of O
(

(1/ω)
(N+1− d−3

2 )
)

, where N = 0; when

we keep the first two terms of the HB ansatz, we are expecting the second-order

asymptotic convergence in the form of O
(

(1/ω)
(N+1− d−3

2 )
)

, where N = 1.

In addition, we consider the error due to the butterfly compression. Since a
detailed analysis of the butterfly compression algorithm with prescribed proxy rows is
beyond the scope of the current work, we assume that the error is simply represented
as O(ebf) to simplify the matter, where ebf is a small positive constant. That said, one
can refer to Section 5 of [39] for a detailed analysis of SVD-based butterfly algorithms.

Finally, when d = 3, by using some estimates provided in Appendix B, we can
write the overall error of our algorithm roughly as

(4.16) Etotal = O
(

(1/ω)(N+1− d−3
2 )
)

+O(h3
0) +O(ωh5

0) +O(ebf),

for N = 0, and

(4.17) Etotal = O
(

(1/ω)(N+1− d−3
2 )
)

+O(h3
0) +O(ωh5

0) +O

(
h0

ω

)
+O(ebf),

for N = 1. When d = 2, we may use the analysis in [19] for the H-B ansatz to
obtain analogous estimates. Note that here we ignore the errors of Chebyshev and
cubic interpolations assuming that they do not dominate over those induced by the
high-order LxF-WENO schemes.

We remark that the term O(ωh5
0) in (4.16) captures the magnification of numerical

phase errors by the frequency ω in the Hankel-based H-B ansatz, in which the phase
function τ appears together with ω in the form of ωτ ; this implies two things: first,
given a set of computed H-B ingredients, we can reuse these ingredients for many
different frequencies as long as the sum of the error terms O(ωh5

0) and O(h3
0) is not

dominant over the other errors; second, if it happens that the frequency ω is so
large that the error from O(ωh5

0) + O(h3
0) is dominant over other errors for a given

set of computed H-B ingredients, then we can always compute more accurate H-B
ingredients on finer meshes so that the resulting error from O(ωh5

0) + O(h3
0) is not
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dominant. Note that such computation tabulates the H-B ingredients on the fixed
Chebyshev nodes in the off-line stage and does not affect the computation time for the
wave function in the online stage. Similar observations apply to the estimate (4.17).

Our numerical results demonstrate that the above error estimates are sound.

5. Numerical Results. This section provides several numerical examples to
demonstrate the accuracy and efficiency of the proposed butterfly-compressed HB
integrator when applied to 2D and 3D computational domains with both homogeneous
and inhomogeneous media. The low-rank compression of the phase/HB coefficients
in subsection 4.1 and the butterfly compression of Kv2v, Ks2v, Ks2s and (Ks2s)−1

in subsection 4.2 have been implemented with distributed-memory parallelism. Most
of the experiments are performed on the Haswell nodes of the Cori machine, a Cray
XC40, at NERSC in Berkeley, where each of the 2, 388 Haswell nodes has two 16-
core Intel Xeon E5-2698v3 processors and 128GB of 2133MHz DDR4 memory. For
most experiments we use 64 Haswell nodes for both the proposed algorithm and the
reference FDFD solver. Part of the experiments are performed on development nodes
at the High Performance Computing Center (HPCC) of MSU, where each node has
two 2.4Ghz 20-core Intel Xeon Gold 6148 CPU and 377GB of RAM.

5.1. Accuracy comparison with FDFD. We first compare the performance
of the proposed algorithm with that of state-of-the-art FDFD solvers for both 2D and
3D computational domains.

5.1.1. 2D domains without and with inclusion. We consider the following
examples of homogeneous and inhomogeneous media:

• Constant media: the computational domain is V = [0, 2]2 with n(r) =
n(x, y) = 2. The phase has an analytical form τ(r, r0) = n(r0)|r−r0|. The HB
coefficients have analytical formulas v0(r, r0) = 1/(2

√
π) and v1(r, r0) = 0.

Therefore, the HB integrator becomes g(r, r0) = i
4H

(1)
0 (ωn(r0)|r − r0|), i.e.,

the well-known form of the free-space Green’s function. We use high-order
Lax-Friedrichs WENO methods with h0 = 0.01 to solve equations (2.4) and
(2.5) with point sources, construct their low-rank representation with an order
of nI = 3 for the Chebyshev interpolation, and compare the results with these
exact formulas.

• Constant-gradient media: the computational domain is V = [0, 1]2 with
n(r) ≡ n(x, y) = 1

0.5−0.25(y−0.5) . Note that 1/n has a nonzero constant partial

derivative in y. Let rc = (0.5, 0.5). When the point source r0 is in the interior

of V , the phase function has an analytical formula τ(r, r0) = 1
|G0|arccosh

(
1+

1
2n(r)n0|G0|2|r − r0|2

)
, where G0 = [0,−0.25] and n0 = n(rc)

1+n(rc)G0·(r0−rc) .

The HB coefficients have no known analytical expressions. We use the high-
order Lax-Friedrichs(LxF)-WENO method with h0 = 0.0025 to solve equation
(2.4) and (2.5) with point sources, and construct the their low-rank represen-
tation with an order of nI = 13 for the Chebyshev interpolation.

• Sinusoidal media: the computational domain is V = [0, 1]2 with n(r) =
n(x, y) = 1

1+0.2 sin(π(x+0.05)) sin(0.5πy) . In this case, both the phase and the HB

coefficients have no known analytical expressions. We use the high-order LxF-
WENO method with h0 = 0.01 to solve (2.4) and (2.5) with point sources,
and construct their low-rank representation with an order of nI = 13 for
the Chebyshev interpolation. Since the exact solutions are not available,
we use FDFD solutions as references and compare the corresponding results
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accordingly.
• Waveguide media: the computational domain is V = [0, 1]2 with n(r) =
n(x, y) = 1

1−0.5e−2.0(x−0.5)2
. In this case, both the phase and the HB coeffi-

cients have no known analytical expressions. We first use the high-order LxF-
WENO method with h0 = 0.01 to solve (2.4) and (2.5) with point sources,
and construct the low-rank representation with an order of nI = 13 for the
Chebyshev interpolation. We then compare the results with the FDFD solu-
tions.

For the inclusion (if present), we consider a semi-circle of radius 0.5 and an open
square of side length 0.8 centered at the domain center. When computing Kv2v,
Ks2v, and Ks2s, let np denote the number of points per wavelength (PPW) for the
discretization of the computational domain or the curve inclusion. The computational
domain is discretized with h = 2π/(ωnmaxnp) with np = 10 and nmax being the max-
imum refractive index over the domain. Similarly, the curve inclusion is discretized
with wi = 2π/(ωnmaxnp) with np = 100 ∼ 500 to ensure highly accurate approxi-
mation for Ks2s. The butterfly and HODBF compression of Kv2v, Ks2v and Ks2s

are computed with tolerance tol = 10−8 in (4.4) and oversampling factor χ = 20 in
(4.15).

Once the discretized integral operators are computed, we apply (3.3) and (3.11)
to the following source functions (i.e., RHSs) centered at rc = (xc, yc) (the domain
center):

• Point source: s(r) = 1/h2 if r is inside the source cell centered at rc.
• Gaussian wavepacket source: s(r) = exp(−|r − rc|2/(2σ2))exp(iω0(r ·

d))t(|r − rc|, w1, w2) with σ = 0.15, w1 = 0.3, w2 = 0.1, ω0 = 0.9ω, and
d = 1√

2
[1, 1]. Here t(x,w1, w2) is the cosine tapering function:

t(x,w1, w2) = 0.5(1 + cos((x− w1)π/w2)) if w1 < x < w2,(5.1)

and t(x,w1, w2) = 1 if x ≤ w1, and t(x,w1, w2) = 0 if x ≥ w2.
• Concave kite-shaped source: Let a kite-shaped curve be ∂Ω = {(x, y) :
x(t) = b(cos(t)+0.65 cos(2t)−0.65)+xc, y(t) = 1.5b sin(t)+yc for 0 ≤ t ≤ 2π}
with a scaling factor b = 0.2. s(r) = 1 if r ∈ Ω and s(r) = t(|r− rc|, w1, w2)
if r /∈ Ω with the tapering function in (5.1). Here w2 = 0.1, w1 = |rmin|, and
rmin is the point on ∂Ω closest to the line r− rc.

Note that although the current form of HB ansatz (2.9) needs further modification
to handle media permitting presence of caustics, we can still model caustics induced
by the interaction of the RHS (the source) with the medium, as shown in the two
examples: the concave kite-shaped source and the open cavity inclusion; both cases
will induce caustics in the wave field as we will see.

As for the reference FDFD solver for computing wavefields ufd(r), we use the
9-point staggered grid scheme in [12]. The computational domain is extended in
each direction with a perfectly matched layer (PML) of thickness 8π/(ωnmax) (i.e., 4
wavelengths). The extended domain is discretized with h = 2π/(ωnmaxnp) with PPW
np = 10 ∼ 50. The resulting sparse linear system is solved with a multi-frontal sparse
direct solver STRUMPACK [23, 37]. When inclusion is present, the rows and columns
of the system which represent grid cells overlapping with the inclusion are removed
from the system. This can introduce significant staircase approximation errors to the
inclusion, unless more sophisticated subgridding techniques are used. Nevertheless,
by careful implementation, we still manage to produce good FDFD results in the
examples that we are going to show.

20



For the constant medium, we first consider ω = 80π, which amounts to 160 wave-
lengths in each direction. The fields computed by the proposed scheme (PPW=10)
and FDFD (PPW=10, 50) and their differences are shown in Figure 5.1. Note that
for the point source without inclusion (Row 1 in Figure 5.1), the exact solution is
also plotted (in dashed green) in the third column. One can clearly see that the so-
lution by the proposed scheme matches well with the exact solution, while it requires
PPW=50 or higher for FDFD to achieve a similar order of accuracy. For the kite-
shaped source (Row 2 in Figure 5.1), the concave shape can induce caustics, which
are well-captured by the proposed scheme. FDFD matches better with the proposed
scheme if PPW=50 other than PPW=10 is used. For the Gaussian wavepacket source
with the semi-circle inclusion (Row 3 in Figure 5.1), FDFD results match poorly with
the proposed scheme even using PPW=50, particularly near the inclusion, due to the
stair-case error in FDFD (this is the case for all the source functions considered). As
a workaround, we consider the open square inclusion (Row 4 in Figure 5.1) for which
FDFD introduces no staircase error. Again, FDFD requires PPW=50 or higher to
achieve a similar accuracy as the proposed scheme. Note that the square inclusion
permits a hierarchical matrix representation of Ks2s as an alternative to HODBF,
but this is not considered in this paper.

Based on these experiments, we further consider ω = 320π, which amounts to
640 wavelengths in each direction. The fields computed by the proposed scheme
(PPW=10) and FDFD (PPW=10) and their differences are shown in Figure 5.2.
We note that the FDFD solver with PPW=10 already results in a sparse system
of dimension 387, 223, 684, and denser discretization causes memory crashes. As a
comparison, the proposed scheme results in a dense, butterfly compressed Kv2v matrix
of dimension Nv = 40, 972, 801. One can see from the point source case (Row 1
in Figure 5.2) that the proposed scheme is still very accurate when changing from
ω = 80π to ω = 320π, but FDFD suffers from dispersion errors. From the Gaussian
wavepacket source without and with inclusion (Row 2-3 in Figure 5.2), it is clear that
PPW=10 for FDFD does not give satisfactory results.

For the constant-gradient medium, we consider ω = 50π and ω = 100π, which
amount to 100 and 200 wavelengths in each direction, respectively. The results are
shown in Figure 5.3 and Figure 5.4. It is not hard to see that for the point source, kite
source, and Gaussian wavepacket source without inclusion (Row 1 and 2 in Figure 5.3
and Figure 5.4), FDFD requires at least PPW=50 to achieve a similar accuracy as
the proposed scheme. However for ω = 100π, FDFD with PPW=20 already leads to
a sparse system of dimension 193, 710, 724. In contrast, the proposed scheme leads to
a dense, butterfly compressed Kv2v matrix of dimension Nv = 16, 008, 001. Similar
conclusions can be drawn for the Gaussian wavepacket source with inclusions (Row 3
and 4 in Figure 5.3 and Figure 5.4).

To see that our method can be applied to generic inhomogeneous media, we test
two more models: the sinusoidal model and the waveguide model.

For the sinusoidal model, we first consider ω = 80π, which amounts to 50 wave-
lengths in each direction, and the results are shown in the first three rows of Figure 5.5.
It is not hard to see that for the point source and Gaussian wavepacket source with-
out inclusion (Row 1 and 2 in Figure 5.5), the proposed scheme can achieve a similar
accuracy as FDFD with PPW=50; similar conclusions can be drawn for the Gaussian
wavepacket source with inclusions (Row 3 in Figure 5.5). In addition, we also show
the result in Row 4 of Figure 5.5 when ω = 40π for the concave kite-shaped source,
and we have chosen this particular frequency so that caustic effects are apparent near
the concave region.
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For the waveguide model, we consider ω = 40π, which amounts to 40 wavelengths
in each direction. We compute wavefields for three different types of sources: the point
source, the Gaussian wavepacket source, and the concave kite-shaped source, and the
results are shown in Row 1 to 3 in Figure 5.6. The FDTD solutions are computed as
references. It can be seen that the proposed scheme can achieve a similar accuracy as
FDFD with PPW=50.

Fig. 5.1: Constant media. ω = 80π (160 wavelengths each direction). Left column:
the field Re(uhb) (in linear scale) computed by the proposed scheme. Middle column:
difference |uhb−ufd| (in log scale) between the fields computed by the proposed scheme
(PPW=10) and FDFD (PPW=50). Right column: the fields |uhb|, |ufd|, |utrue| (in
log scale) drawn along the line y = ypost. Row 1: point source with ypost = 2 − 10h
and h corresponding to PPW=10. Row 2: kite-shaped source with ypost = 2 − 10h.
Row 3: Gaussian packet source with ypost = 1− 10h and a semi-circle inclusion. Row
4: Gaussian packet source with ypost = 2− 10h and an open-square inclusion.
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Fig. 5.2: Constant media. ω = 320π (640 wavelengths each direction). Left column:
the field Re(uhb) (in linear scale) computed by the proposed scheme. Middle column:
difference |uhb−ufd| (in log scale) between the fields computed by the proposed scheme
(PPW=10) and FDFD (PPW=10). Right column: the fields |uhb|, |ufd|, |utrue| (in log
scale) drawn along the line y = ypost. Row 1: point source with ypost = 2− 10h and
h corresponding to PPW=10. Row 2: Gaussian packet source with ypost = 2 − 10h.
Row 3: Gaussian packet source with ypost = 2− 10h and an open-square inclusion.

5.1.2. 3D domain without inclusion. We consider the following examples of
homogeneous and inhomogeneous media for d = 3:

• Constant media: the computational domain is V = [0, 0.5]3 with n(r) =
n(x, y, z) = 2. The phase function has an analytical formula τ(r, r0) =
n(r0)|r−r0|. The HB coefficients have analytical form v0(r, r0) = n(r0)/(2π)
and v1(r, r0) = 0. The HB integrator becomes g(r, r0) = exp(iωn(r0)|r −
r0|)/(4π|r− r0|), i.e., the well-known form of the free-space Green’s function.
We use the Lax-Friedrichs WENO method with h0 = 0.01 to solve (2.4) and
(2.5) with point sources, construct the low-rank representation with an order
of nI = 3 for the Chebyshev interpolation, and compare the results with these
exact formulas.

• Constant-gradient media: the computational domain is V = [0, 0.52]3

with n(r) = n(x, y, z) = 1
0.5−0.8(y−0.26) = −1.25

y−0.885 . Note that 1/n has a

nonzero constant partial derivative in y. The phase function has an analyt-

ical form τ(r, r0) = 1
|G0|arccosh

(
1 + 1

2n(r)n(r0)|G0|2|r − r0|2
)

with G0 =
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Fig. 5.3: Constant-gradient media. ω = 50π (100 wavelengths each direction). Left
column: the field Re(uhb) (in linear scale) computed by the proposed scheme. Middle
column: difference |uhb − ufd| (in log scale) between the fields computed by the pro-
posed scheme (PPW=10) and FDFD (PPW=50). Right column: the fields |uhb|, |ufd|
(in log scale) drawn along the line y = ypost. Row 1: point source with ypost = 1−10h
and h corresponding to PPW=10. Row 2: kite-shaped source with ypost = 1 − 10h.
Row 3: Gaussian packet source with ypost = 0.5 − 10h and a semi-circle inclusion.
Row 4: Gaussian packet source with ypost = 1− 10h and an open-square inclusion.

[0,−0.8, 0]. The HB coefficients have no known analytical expressions. We
use the fifth-order LxF WENO method with h0 = 0.01 to solve (2.4) and (2.5)
with point sources, and construct the low-rank representation with an order of
nI = 9 for the Chebyshev interpolation. It is worth mentioning that the ex-

act Green’s function [28] exists as g(r, r0) = (|y−c||y0−c|)1/2
2πRR′ exp

(
2i(a2ω2 −

1/4)1/2arctanh(R/R′)
)
. Here a = 1.25, c = 0.885, R = |r − r0|, and
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Fig. 5.4: Constant-gradient media. ω = 100π (200 wavelengths each direction). Left
column: the field Re(uhb) (in linear scale) computed by the proposed scheme. Mid-
dle column: difference |uhb − ufd| (in log scale) between the fields computed by
the proposed scheme (PPW=10) and FDFD (PPW=20). Right column: the field
|uhb|, |ufd| (in log scale) drawn along the line y = ypost. Row 1: point source with
ypost = 1 − 10h and h corresponding to PPW=10. Row 2: Gaussian packet source
with ypost = 1 − 10h. Row 3: Gaussian packet source with ypost = 0.5 − 10h and a
semi-circle inclusion. Row 4: Gaussian packet source with ypost = 1 − 10h and an
open-square inclusion.

R′ =
√

(x− x0)2 + (y + y0 − 2c)2 + (z − z0)2.
To compute Kv2v, we discretize the domain with h = 2π/(ωnmaxnp) with np ∼

5 and nmax being the maximum refractive index over the domain. The HODBF
compression of Kv2v is computed with tolerance tol = 10−6 in (4.4) and oversampling
factor χ = 4 in (4.15). We apply (3.3) to the following RHSs centered at rc (the
domain center):
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Fig. 5.5: Sinusoidal media. ω = 80π (50 wavelengths each direction) for the first three
rows and ω = 40π (25 wavelengths each direction) for the last row. Left column: the
field Re(uhb) (in the linear scale) computed by the proposed scheme. Middle column:
difference |uhb − ufd| (in the log scale) between the fields computed by the proposed
scheme (PPW=10) and FDFD (PPW=50). Right column: the fields |uhb|, |ufd| (in the
log scale) drawn along the line y = ypost. Row 1: point source with ypost = 1−10h and
h corresponding to PPW=10. Row 2: Gaussian packet source with ypost = 1 − 10h.
Row 3: Gaussian packet source with ypost = 0.5 and a semi-circle inclusion. Row 4:
concave kite-shaped source with ypost = 1− 10h.

• Point source: s(r) = 1/h3 if r is inside the source cell centered at rc.
• Gaussian wavepacket source: s(r) = exp(−|r − rc|2/(2σ2))exp(iω0(r ·

d))t(|r − rc|, w1, w2) with σ = 0.15, w1 = 0.05, w2 = 0.05, ω0 = 0.9ω,
d = 1√

3
[1, 1, 1], and t is the tapering function in (5.1).

As for the reference FDFD solver, we use the 27-point staggered grid scheme in
[51]. The computational domain is extended in each direction with a perfectly matched
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Fig. 5.6: Waveguide media. ω = 40π (40 wavelengths each direction). Left col-
umn: the field Re(uhb) (in the linear scale) computed by the proposed scheme. Mid-
dle column: difference |uhb − ufd| (in the log scale) between the fields computed by
the proposed scheme (PPW=10) and FDFD (PPW=50). Right column: the fields
|uhb|, |ufd| (in the log scale) drawn along the line y = ypost. Row 1: point source with
ypost = 1 − 10h and h corresponding to PPW=10. Row 2: Gaussian packet source
with ypost = 1− 10h. Row 3: concave kite-shaped source with ypost = 1− 10h. Row
4: Gaussian packet source with ypost = 0.5 and a semi-circle inclusion.

layer (PML). The resulting sparse linear system is solved with STRUMPACK [23, 37].
For the constant medium, we use PMLs of thickness 3π/(ωnmax) (1.5 wave-

lengths). We consider ω = 40π (20 wavelengths in each direction). The fields com-
puted by the proposed scheme (PPW=5) and FDFD (PPW=10) and their differences
are shown in Figure 5.7. For the point source (Row 1 in Figure 5.7), the exact solution
is also plotted (in dashed green) in the third column. We can see that for both the
point source and Gaussian wavepacket source, the results from FDFD with PPW=10
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are not satisfactory. The FDFD scheme with PPW=10 results in a sparse system of
dimension 2403 = 13, 824, 000, and PPW=20 will lead to 4803 = 110, 592, 000. In
contrast, the proposed scheme results in a dense, compressed matrix of dimension
Nv = 1, 030, 301.

For the constant-gradient medium, we use PMLs of thickness 10π/(ωnmax) (5
wavelengths). We first consider ω = 32π (27 wavelengths in each direction). The fields
computed by the proposed scheme (PPW=4.56) and FDFD (PPW=9.12) and their
differences are shown in Figure 5.8. For the point source (Row 1 in Figure 5.8), the
exact solution is also plotted (in dashed green) in the third column. The FDFD scheme
with PPW=9.12 results in a sparse system of dimension 3523 = 43, 614, 208. The
proposed scheme results in a dense, compressed matrix of dimension Nv = 2, 248, 091.
Next, we consider ω = 64π (54 wavelengths in each direction). The fields computed by
the proposed scheme (PPW=4.56) and FDFD (PPW=4.56) and their differences are
shown in Figure 5.8. For the point source (Row 3 in Figure 5.8), the exact solution is
also plotted (in dashed green) in the third column. Clearly, the FDFD results are not
reliable. The FDFD scheme with PPW=4.56 results in a sparse system of dimension
3053 = 28, 372, 625 and even higher PPWs for the FDFD scheme lead to large-scale
linear systems of dimensions that no existing sparse direct solvers can deal with. In
contrast, the proposed scheme results in a dense, compressed matrix of dimension
Nv = 17, 779, 581.

Fig. 5.7: Constant media in d = 3. ω = 40π (20 wavelengths each direction). Left col-
umn: the field Re(uhb) (in linear scale) computed by the proposed scheme. Middle col-
umn: difference |uhb−ufd| (in log scale) between the fields computed by the proposed
scheme (PPW=5) and FDFD (PPW=10). Right column: the field |uhb|, |ufd|, |utrue|
(in log scale) drawn along the line y = 0.5−10h and z = 0.5−10h with h corresponding
to PPW=5. Row 1: point source. Row 2: Gaussian packet source.

5.2. Convergence test. Next, we validate the convergence of high-order Lax-
Friedrichs WENO schemes and the overall error estimates (4.16) and (4.17) of the HB
ansatz using the 3-D constant-gradient model with a point source excitation, where
d = 3. As mentioned in subsection 5.1.2, both the phase τ and the Green’s function
in such a medium have exact formulas.
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Fig. 5.8: Constant-gradient media in d = 3. Left column: the field Re(uhb) (in linear
scale) computed by the proposed scheme. Middle column: difference |uhb − ufd| (in
log scale) between the fields computed by the proposed scheme and FDFD. Right
column: the field |uhb|, |ufd|, |utrue| (in log scale) drawn along the line y = 10h and
z = 10h with h corresponding to PPW=4.56. Row 1: ω = 32π (27 wavelengths each
direction) with point source. Row 2: ω = 32π (27 wavelengths each direction) with
Gaussian packet source. Row 3: ω = 64π (54 wavelengths each direction) with point
source.

First, errors of the phase computed by the first-, third- and fifth-order Lax-
Friedrichs WENO schemes with varying h0 are shown in Figure 5.9 (left), which

behave as O(hβ0 ) with higher convergence order β for higher order WENO schemes.
When we apply the fifth-order Lax-Friedrichs WENO scheme to compute τ , v0 and
v1 are expected to have third-order and first-order accuracy, respectively, since v0 and
v1 are computed from τ . Because exact solutions of v0 and v1 are unknown, we will
use the third- and first-order accuracy of τ as the reference accuracy for v0 and v1,
respectively.

Second, overall errors of wavefields (Green’s functions) using the one-term (N =
0) or two-term (N = 1) HB ansatz (2.9) with the HB ingredients computed by the
fifth-order Lax-Friedrichs WENO scheme are shown in Figure 5.9 (right), which be-
have as O(ω−1) and O(ω−2) as estimated by (4.16) and (4.17), respectively, for the
one-term and two-term expansions.

When N = 1, the HB coefficient v1 only has first-order accuracy O(h0) which is
dominant over the accuracy of τ and v1, and thus the overall error Etotal in (4.17)
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Fig. 5.9: Convergence test for a constant-gradient model in d = 3 with a point source.
Left: Errors (w.r.t. the exact solution) of the phase function computed by the first-,
third-, and fifth-order Lax-Friedrichs WENO schemes with varying h0. Right: Errors
(w.r.t. the exact solution; see (2.10)) of the wavefield using the one-term (N = 0)
or two-term (N = 1) HB ansatz (2.9), where the phase function is computed by the
fifth-order Lax-Friedrichs WENO scheme.

reduces to

(5.2) Etotal = O
(
(1/ω)2

)
+O(h3

0) +O(ωh5
0) +O

(
h0

ω

)
,

where the butterfly compression is not used and thus its error does not appear in
the above. When the O((1/ω)2) term is larger than the other terms combined, the
first error term dominates so that we can observe the second-order asymptotic con-
vergence in 1/ω clearly; however, once ω is so large that the sum of three terms,
O(h3

0) + O(ωh5
0) + O(h0

ω ), dominates, the overall error nearly saturates since the
O(ωh5

0) term increases slowly as ω does. Such convergence behavior can be seen
clearly in Figure 5.9.

When N = 0, v1 disappears in the HB expansion and v0 has third-order accuracy
O(h3

0) which is dominant over that of τ ; hence, the overall error Etotal in (4.16) reduces
to

(5.3) Etotal = O(1/ω) +O(h3
0) +O(ωh5

0),

where the butterfly compression is not used and thus its error does not appear in the
above. When the O(1/ω) term is larger than the other terms combined, then the first
error term dominates so that we can observe the first-order asymptotic convergence
in 1/ω clearly for a much broader band of ω. Such convergence behavior can be seen
clearly in Figure 5.9.

5.3. Complexity validation. In this subsection, we validate the CPU and
memory complexities of the proposed scheme claimed in subsections 4.2.2, 4.2.3, and
4.2.4 using the constant and constant-gradient medium for d = 2 and d = 3.

5.3.1. 2D domains. For the constant medium, we consider the computational
domain [0, 2]2 with an open square inclusion of side length 0.8m, as described in
subsection 5.1.1. The domain and the inclusion are discretized with PPW np = 10
and np = 500, respectively. We vary the frequency and cell count from ω = 10π and
Nv = 40, 401 to ω = 320π and Nv = 40, 972, 801, respectively. Note that ω = 320π
corresponds to 640 wavelengths per direction. Each simulation uses 64 Cori Haswell
nodes. The CPU time and memory requirement for computing Kv2v, Ks2v and Ks2s

(and its inverse) are plotted in Figure 5.10 (top). Note that the value of Ns for each
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sample of Nv is not shown here. For the memory requirement, all discretized integral
operators scale at most as O(Nv log2Nv) as expected. For the computational time,

Kv2v and Ks2s scale at most as O(Nv log2Nv), and Ks2v scales as O(N
7/6
v ), which

can be further improved by additional matrix partitioning or analytical interpolation-
based compression. We note that the time for Ks2v is about 8 times faster than Kv2v

when ω = 320π.
For the constant-gradient medium, we consider the computational domain [0, 1]2

with an open square inclusion of side length 0.8, as described in subsection 5.1.1.
The domain and the inclusion are discretized with PPW np = 10 and np = 500,
respectively. We vary the frequency and cell count from ω = 12.5π and Nv = 63, 001
to ω = 200π and Nv = 16, 008, 001, respectively. Note that ω = 200π corresponds to
400 wavelengths per direction. Each simulation uses 64 Cori Haswell nodes. The CPU
time and memory requirement for computing Kv2v, Ks2v and Ks2s (and its inverse)
are plotted in Figure 5.10 (bottom). Just like the constant medium, the memory
requirement and CPU time mostly scale as at most O(Nv log2Nv).

5.3.2. 3D domains. For the constant medium, we consider the computational
domain [0, 0.5]3 as described in subsection 5.1.2. The domain is discretized with PPW
np = 5. We vary the frequency and cell count from ω = 10π and Nv = 263 = 17576 to
ω = 80π and Nv = 2013 = 8, 120, 601, respectively. Note that ω = 80π corresponds to
40 wavelengths per direction. Each simulation uses 64 Cori Haswell nodes. The CPU
time and memory requirement for computingKv2v are plotted in Figure 5.11 (top). As
estimated in subsection 4.2.2, the memory requirement scales as O(Nv log2Nv), and

the CPU time scales as O(N
4/3
v ). From subsection 4.2.2, the matrix entry computation

requires O(Nv log2Nv) and the IDs require O(N
4/3
v ). Both theoretical curves are

plotted in Figure 5.11 (top). This sub-optimal CPU complexity for the IDs can be
further improved via analytical interpolation schemes.

For the constant-gradient medium, we consider the domain [0, 0.52]3 as described
in subsection 5.1.2. The domain is discretized with PPW np = 4.56. We vary the
frequency and cell count from ω = 8π and Nv = 363 = 46656 to ω = 64π and
Nv = 2623 = 17, 984, 728, respectively. Note that ω = 64π corresponds to 54 wave-
lengths per direction. Each simulation uses 64 Cori Haswell nodes. The CPU time
and memory requirement for computing Kv2v are plotted in Figure 5.11 (top). The
conclusion is very similar to the case of constant media.

6. Conclusion. We present a fast and accurate scheme based on the Hadamard-
Babich integrator for solving high-frequency Helmholtz equations in smooth, inhomo-
geneous media with arbitrary sources. The scheme low-rank compresses the phase
and HB coefficients in the HB integrator with Chebyshev interpolation by solving
their governing equations via Lax-Friedrichs WENO schemes with point sources lo-
cated at the Chebyshev nodes. Once compressed, the phase and HB coefficients are
used in the butterfly and HODBF compression of the resulting HB integrator dis-
cretized using Nv cells. Construction and application of the HB integrator require
O(Nv log2Nv) CPU time and storage units. The scheme can also handle scattering
problems involving sound-hard inclusion in the computational domain. In addition,
the new scheme requires a much smaller number of discretization points per wave-
length compared to finite-difference solvers. As a result, the scheme can model wave
propagation for inhomogeneous media in so-far the largest 2D and 3D domains in
terms of wavelength volume on a state-the-art supercomputer at Lawrence Berkeley
National Laboratory. Future research direction includes extension of the proposed
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Fig. 5.10: CPU time (left) and storage units (right) for computing Kv2v, Ks2v and
Ks2s (and its inverse) with problem dimension d = 2. (Top): constant media with
an open square inclusion. The largest data point corresponds to 640 wavelengths per
direction. (Bottom): constant-gradient media with an open square inclusion. The
largest data point corresponds to 400 wavelengths per direction.
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Fig. 5.11: CPU time (left) and storage units (right) for computing Kv2v with problem
dimension d = 3. (Top): constant media. The largest data point corresponds to 40
wavelengths per direction. (Bottom): constant-gradient media. The largest data
point corresponds to 54 wavelengths per direction.

scheme to non-smooth media or those media permitting presence of caustics, as well
as to Maxwell’s equations.
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Appendix A. Computation of Self-interaction Terms.

A.1. 2-D self-interaction terms. By the H-B ansatz (2.9), we need to inte-
grate the leading order term, which reduces to integrating

f0(ω, τ) = i

√
π

2
H

(1)
0 (ωτ(r, r0))

= i

√
π

2
H

(1)
0 (ωn(r)|r− r0|)(A.1)

over the cell cj of size h with respect to r0, where r is the center of cj . Here the
leading HB coefficient is constant and is suppressed for now.

Lemma A.1. The integral

I(r) =

∫
cj

H
(1)
0 (ωn(r)|r− r0|)dr0

can be reduced to evaluating

I(r) =
1

(n0ω)2

[
8

∫ π
4

0

hn0ω

2 cos θ
H

(1)
1

(
hn0ω

2 cos θ

)
dθ + 4i

]
,(A.2)

where n0 = n(r), and we need to use the Bessel function to evaluate the above integral.

Proof. The integral I can be reduced to the integration over a cell of size h
centered at the origin. We further partition this cell into eight equal triangles. By
using the geodesic polar coordinates centered at the origin, the integral I can be
reduced to evaluating the following integral over one triangle,

I(r) = 8

∫ π
4

0

dθ

∫ h
2 cos θ

0

H
(1)
0 (ωn0r)rdr.(A.3)

Using the following relation from [1], formula 9.1.30,

d

dt

(
t H

(1)
1 (t)

)
= t H

(1)
0 (t),

we consider the integral∫ h
2 cos θ

0

H
(1)
0 (ωn0r) r dr =

1

(n0ω)2

∫ hn0ω
2 cos θ

0

H
(1)
0 (t) t dt
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=
1

(n0ω)2

∫ hn0ω
2 cos θ

0

d

dt
(tH

(1)
1 (t))dt

=
1

(n0ω)2

[
hn0ω

2 cos θ
H

(1)
1

(
hn0ω

2 cos θ

)
+

2i

π

]
,(A.4)

where we have used the formula 9.1.9 of [1] to obtain the constant term.
Now the integral I can be further reduced to

I(r) =
1

(n0ω)2

[
8

∫ π
4

0

hn0ω

2 cos θ
H

(1)
1

(
hn0ω

2 cos θ

)
dθ + 4i

]
,(A.5)

where we need to use the Bessel function to evaluate the above integral. This yields
the formula (A.2).

Therefore, we approximate the self term as∫
cj

g(r, r0)dr0 ≈
∫
cj

[
v0(r, r0)

i
√
π

2
H

(1)
0 (ωn(r)|r− r0|)

]
dr0

≈ v0(r, r)
i
√
π

2
I(r) =

1

2
√
π

i
√
π

2
I(r) =

i

4
I(r),(A.6)

where I is defined in (A.2).

A.2. 3-D self-interaction terms. Near the source in the 3-D case, from for-
mulas (2.9) and (2.2) we have by keeping the leading-order term,

(A.7) g(r, r0) = n0
eiωτ

4πτ
,

where n0 is the slowness at the source, and we refer to [56] for the reduction process.
Formula (A.7) represents the 3-D Green’s function near the source. What we

need is its integration over the 3-D cube of side h. We first consider a special case.

A.2.1. Integration of Hankel in 3-D: a special case. The basic idea of the
calculation is to write the integral of (A.7) over a cube of side h with source point at
the center, taken as the origin. The faces of the cube are the planes x = ±h2 , y = ±h2 ,

and z = ±h2 .
Since we have

h
(1)
0 (r) = j0(r) + iy0(r) [[1], 10.1.1]

=
sin r − i cos r

r
[[1], 10.1.11, 10.1.12]

= −i e
i r

r
,(A.8)

which is a scaled form of (A.7), we start with the integral of h
(1)
0 (r), where r is the

spherical polar radius.
We need to integrate this function over the cube of side h, so we need

Q =

∫
S2

∫ r1(k)

0

h
(1)
0 (r)r2dr dk,(A.9)
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where k is the unit vector direction of x = (x, y, z) and r1(k) is the value of r where
the ray k pierces through the surface of the cube of “radius” h

2 , and S2 is the unit
spherical surface in R3.

We will integrate this over the tetrahedron,

0 < z <
h

2
, 0 < x < z, 0 < y < x.

So now let us consider the parameterization of k. Let the ray in direction k cut the
plane z = 1 in (ξ, η, 1) or (ρ cosφ, ρ sinφ, 1), where ρ is the cylindrical polar radius
and φ is the azimuthal angle, varying from 0 to π

4 . We will integrate over the region

0 < z < h
2 , 0 < x < y, drawn as quite a small tetrahedron near the origin 0. The

whole cube of side h contains 48 of these small tetrahedra.
Equation (A.9) may be rewritten

Q = −48i

∫
S
′
2

∫ r1(k)

0

ei rrdr dk,(A.10)

where dk is the surface element of the unit sphere on which k lies, and S
′

2 is a part
of the unit spherical surface to be made precise below.

We parameterize k in the first instance by (ξ, η), which are x and y coordinates
in the plane z = 1. Thus, we have

k =
(ξ, η, 1)√

1 + ξ2 + η2
=

(ρ cosφ, ρ sinφ, 1)√
1 + ρ2

.(A.11)

Let us radically project the element dξdη = ρ dρ dφ onto the unit sphere. Thus,

(A.12) dk =
1

1 + ρ2
cosψ dξ dη.

Here ψ is the angle between the normal to the plane z = 1 and k, i.e.,

(A.13) cosψ = (0, 0, 1)T · (ξ, η, 1)T
1√

1 + ρ2
=

1√
1 + ρ2

.

Thus,

(A.14) dk =
dξ dη

(1 + ρ2)
3
2

=
ρ dρ dφ

(1 + ρ2)
3
2

.

From (A.9) and (A.14), we get

Q = −48i

∫ π
4

0

dφ

∫ r1(ρ)

0

reirdr
ρ dρ

(1 + ρ2)
3
2

,(A.15)

r1(ρ) =
h

2
(1 + ρ2)

1
2 .(A.16)

The r integral can be done easily using integration by parts:∫ r1

0

reirdr = [
1

i
reir]r10 −

∫ r1

0

1

i
eirdr

=
1

i
r1e

ir1 + [eir]r10
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= −ir1e
ir1 + eir1 − 1

= eir1(1− ir1)− 1.(A.17)

So, from (A.10),

Q = −48i

∫ π/4

0

dφ

∫ 1
cosφ

0

(eir1(1− ir1)− 1)
ρ dρ

(1 + ρ2)
3
2

.(A.18)

Set

ρ
′

= ρ cosφ, dρ =
1

cosφ
dρ
′
.(A.19)

Then

Q = −48i

∫ π/4

0

dφ

∫ 1

0

dρ′[eir1(ρ)(1− ir1(ρ))− 1]
ρ

(1 + ρ2)
3
2

1

cosφ
.(A.20)

The function f(ρ′, φ) is given by

f(ρ′, φ) = [eir1(ρ)(1− ir1(ρ))− 1]
ρ

(1 + ρ2)
3
2

1

cosφ
,(A.21)

where

ρ =
ρ′

cosφ
,

r1(ρ) =
h

2
(1 + ρ2)

1
2(A.22)

by equations (A.16) and (A.19).

A.2.2. Integration of Hankel in 3-D: generic case. Formula (A.7) repre-
sents the 3-D Green’s function near the source. What we need is its integration over
the 3-D cube of side h. To do that, we just need to carry out a coordinate trans-

formation to transfer the integral of h
(1)
0 derived in Appendix A.2.1 to our current

setting.
We have near the source

g(r, r0) = n0
eiωτ

4πτ

=
in0ω

4π
(−i)e

iωτ

ωτ

=
in0ω

4π
h

(1)
0 (ωτ)

=
in0ω

4π
h

(1)
0 (ωn0|r− r0|)

=
in0ω

4π
h

(1)
0 (ωn0r),(A.23)

where r = |r− r0|.
The integration of the above Green’s function in the cell centered at the source

will be

I =
in0ω

4π

∫
S2

∫ r1(k)

0

h
(1)
0 (ωn0r)r

2dr dk
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=
in0ω

4π

∫
S2

∫ ωn0r1(k)

0

h
(1)
0 (t)

t2

ω2n2
0

dt

ωn0
dk

=
i

4πω2n2
0

∫
S2

∫ ωn0r1(k)

0

h
(1)
0 (t) t2 dt dk

=
i

4πω2n2
0

Qs,(A.24)

where Qs is the scaled integral of Q as defined in (A.20) and hence is defined by the
following integration,

Qs = −48i

∫ π/4

0

dφ

∫ 1

0

dρ′
[
eir1(ρ)(1− ir1(ρ))− 1

] ρ

(1 + ρ2)
3
2

1

cosφ

= −48i

∫ π/4

0

dφ

∫ 1

0

dρ′f(ρ′, φ).(A.25)

The function f(ρ′, φ) is given by

f(ρ′, φ) =
[
eir1(ρ)(1− ir1(ρ))− 1

] ρ

(1 + ρ2)
3
2

1

cosφ
,(A.26)

where

ρ =
ρ′

cosφ
and r1(ρ) = ωn0

h

2
(1 + ρ2)

1
2(A.27)

by equation (A.22). Here r1(ρ) is scaled by the factor ωn0.

Appendix B. Numerical accuracy of the truncated 3-D H-B ansatz.
Since the H-B ansatz (2.1) is based on Hankel functions, we may directly analyze
the effect of accuracy of the H-B ingredients, such as the phase and H-B coefficients,
on wave solution. However, since, away from the point source, the H-B ansatz is
equivalent to the traditional geometrical optics [56, 42], to avoid some technical details
we will consider the following truncated geometrical-optics ansatz (valid for 3-D wave
motion) as a proxy for the truncated H-B ansatz away from the point source:

gGO(r, r0) =

N∑
s=0

As(r, r0)

(iω)s
eiωτ(r,r0),(B.1)

where r0 is the source, r is the observation point, N is an integer, τ is the phase satis-
fying the eikonal equation, and {As}Ns=0 are amplitudes satisfying transport equations
[3, 4, 56, 42].

Since these As functions are directly linked to the H-B coefficients vs [4, 56, 42],
we can assume that these As functions are computed to the same orders of accuracy
as vs away from the point source. Starting from this assumption, we briefly analyze
the error between gGO(r, r0) and its numerical solution ghGO(r, r0) for any point r
away from the source r0.

When N = 0, we have

|gGO(r, r0)− ghGO(r, r0)| = |A0(r, r0)eiωτ(r,r0) −Ah0 (r, r0)eiωτ
h(r,r0)|

≤ O(h3
0) +O(ωh5

0).(B.2)
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When N = 1, we have

|gGO(r, r0)− ghGO(r, r0)| ≤ |A0(r, r0)eiωτ(r,r0) −Ah0 (r, r0)eiωτ
h(r,r0)|

+
1

ω
|A1(r, r0)eiωτ(r,r0) −Ah1 (r, r0)eiωτ

h(r,r0)|

≤ O(h3
0) +O(ωh5

0) +O

(
h0

ω

)
+O(h5

0)

= O(h3
0) +O(ωh5

0) +O

(
h0

ω

)
.(B.3)

Therefore, away from the point source we will use the above geometrical-optics
estimates as the proxy for the truncated H-B estimates in the total error estimates.
On the other hand, near the source but excluding the source, such truncated H-B
estimates also hold since we have the following two observations: (1) the H-B ansatz
is an uniformly asymptotic solution to the point-source Helmholtz equation so that it
can be treated as the exact solution of the point-source equation, and (2) the computed
H-B ingredients in the truncated H-B expansion are initialized near the point source
according to specified orders of accuracy.
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