
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/324738598

A butterfly‐based direct solver using hierarchical LU factorization for Poggio‐

Miller‐Chang‐Harrington‐Wu‐Tsai equations

Article  in  Microwave and Optical Technology Letters · June 2018

DOI: 10.1002/mop.31166

CITATIONS

2
READS

66

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Fast Direct Solver for Integral Equation Methods View project

Integral Equation Based Domain Decomposition Method for Analysis of Multiscale Objects View project

Han Guo

University of Michigan

19 PUBLICATIONS   137 CITATIONS   

SEE PROFILE

Yang Liu

Lawrence Berkeley National Laboratory

27 PUBLICATIONS   95 CITATIONS   

SEE PROFILE

Jun Hu

University of Electronic Science and Technology of China

338 PUBLICATIONS   1,214 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Yang Liu on 05 September 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/324738598_A_butterfly-based_direct_solver_using_hierarchical_LU_factorization_for_Poggio-Miller-Chang-Harrington-Wu-Tsai_equations?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/324738598_A_butterfly-based_direct_solver_using_hierarchical_LU_factorization_for_Poggio-Miller-Chang-Harrington-Wu-Tsai_equations?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Fast-Direct-Solver-for-Integral-Equation-Methods?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Integral-Equation-Based-Domain-Decomposition-Method-for-Analysis-of-Multiscale-Objects?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Han_Guo13?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Han_Guo13?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Michigan?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Han_Guo13?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Liu4?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Liu4?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Lawrence_Berkeley_National_Laboratory?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Liu4?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jun_Hu12?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jun_Hu12?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Electronic_Science_and_Technology_of_China?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jun_Hu12?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Liu4?enrichId=rgreq-5b93ed4c3444b35e636bae67f995504a-XXX&enrichSource=Y292ZXJQYWdlOzMyNDczODU5ODtBUzo3OTk4Njg5MjY4MjAzNTNAMTU2NzcxNTAyMTY0OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

  

A butterfly-based direct solver 
using hierarchical LU factori-
zation for PMCHWT equations  
 
Han Guo1  |   Yang Liu1  |   
Jun Hu2     |   Eric Michielssen1 
 
1 Department of Electrical Engineering and Computer Science, University of 
Michigan, Ann Arbor, MI 48109, USA 

2 Department of Microwave Engineering, University of Electronic Science 
and Technology of China, Chengdu, Sichuan 611731, China 
 
Correspondence 
Yang Liu, Department of Electrical Engineering and Computer Science, 
University of Michigan, Ann Arbor, MI 48109, USA.  
Email: liuyangz@umich.edu 
 

Abstract 
A butterfly-based hierarchical LU factorization scheme for 
solving the PMCHWT equations for analyzing scattering 
from homogenous dielectric objects is presented. The 
proposed solver judiciously re-orders the discretized inte-
gral operator and butterfly-compresses blocks in the oper-
ator and its LU factors. The observed memory and CPU 
complexities scale as 2( log )O N N  and 1.5( log )O N N , re-
spectively. The proposed solver is applied to the analyses of 
scattering several large-scale dielectric objects. 
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fast direct solver, butterfly scheme, integral equation, homogenous dielec-
trics, scattering analysis,  Poggio-Miller-Chang-Harrington-Wu-Tsai 
equation (PMCHWT)  

1  |   INTRODUCTION 
The analysis of electromagnetic scattering from large-scale 
(piecewise) homogenous dielectric-magnetic objects often-
times is performed using fast multipole-accelerated  
Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) 
integral equation (IE) solvers1,2. Unfortunately, these iterative 
methods suffer from poor convergence when the object under 
study supports high-Q resonances or is discretized via dense 
meshes. They also become inefficient when applied to prob-
lems involving multiple excitations or requiring partial up-
dates of discretized IE operators, further termed interaction 
matrices.    

Fast direct solvers oftentimes outperform iterative ones 
under these conditions.  With few exceptions, present direct 
solvers approximate off-diagonal blocks of interaction ma-
trices and their “inverses” (e.g., LU factors and inverse de-
compositions leveraging H-matrix, hierarchically 

semi-separable matrix, and skeletonization techniques) using 
low-rank (LR) products3,4,5,6,7,8,9.  These solvers exhibit qua-
si-linear CPU and memory requirements when applied to 
electrically small3,10 and structured11,12,13, 14 objects. However, 
when used for analyzing scattering from electrically large and 
arbitrarily-shaped objects, their CPU and memory 
requirements deteriorate to ( log )O N Nα β   
( 2.0 3.0α =  , 1β ≥ ) and ( log )O N Nα  ( 1.3 2.0α =  ), as 
off-diagonal blocks of interaction matrices and their inverses 
are no longer LR compressible.  

Recently, a new class of direct solvers leveraging butterfly 
compression schemes15,16,17,18 was developed19,20,21. Butterfly 
schemes represent judiciously selected submatrices in 
off-diagonal blocks of interaction matrices (that are them-
selves LR incompressible) and their inverses in terms of LR 
products. The CPU and memory requirements of butter-
fly-based direct solvers for analyzing scattering from perfect 
electrically conducting (PEC) objects were estimated and 
experimentally validated to be 1.5( log )O N N  and 

2( log )O N N , irrespective of the object’s shape and size21.  
This letter extends the above-referenced solver for PEC 

scatterers to homogeneous dielectric-magnetic objects.  Spe-
cifically, it introduces a fast butterfly-enhanced hierarchical 
LU scheme for solving the PMCHWT equations. Butterfly 
compression is applied to blocks of a judiciously re-ordered 
PMCHWT interaction matrices, effectively combining four 
blocks in the original matrix into one that models a single 
(admissible) source-observer pair.  The solver is applied to 
the analysis of scattering from a sphere, a NASA almond, and 
a helicopter model involving one million unknowns.  Its CPU 
and memory requirements are observed to scale as 

1.5( log )O N N  and 2( log )O N N , respectively. 

2  |   FORMULATION 

2.1  |  PMCHWT Equations 
Let Γ  denote an arbitrarily-shaped closed surface with 

outward pointing normal n̂ . The exterior and interior of Γ  
henceforth are termed regions 1 and 2.  Region i = 1,2 has 
constant permittivity and permeability ε i  and µi , respec-
tively. Time-harmonic electromagnetic fields 

inc inc{ ( ), ( )}E r H r  with angular frequency ω   produced by 
sources in region 1 impinge on Γ . Total electromagnetic 
fields { ( ), ( )}E r H r are composed of incident and scattered 
fields, and relate to equivalent electric and magnetic currents 

ˆ( ) ( )= ×J r n H r  and ˆ( ) ( )= ×M r E r n  on Γ  that satisfy the 
PMCHWT equations  

mailto:liuyangz@umich.edu
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Here η µ ε=i i i  is the wave impedance in region i , and 
the operators i  and i  are  

2
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where I  is the identity dyad,  P.V. denotes Cauchy principal 
value, and ω ε µ=i i ik  and ( , ') exp( ) / (4 )i ig ik R Rπ=r r  
with 'R = −r r  are the wavenumber and Green’s function 
for region i , respectively. 

To numerically solve (1) and (2), currents 1 ( )η J r  and 
( )M r  are discretized using N ′  Rao-Wilton-Glisson (RWG) 

basis functions ( )nf r  as22 

 1
1

( ) ( )
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J
n n

n
Iη

′
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= ∑J r f r  (5) 
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Here J
nI  and M

nI  are electric and magnetic current expansion 
coefficients associated with ( )nf r . Inserting (5)-(6) into 
(1)-(2) and testing the resulting equation with ˆ ( )n×n f r  
yields the following N N×  with 2N N ′=  linear system of 
equations: 

   
2

1

1

2

1 2 1 2

1 2 1 2
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J E

M H

η
η

η
η

 − −      =         

T + T K K I V
I VK + K T + T

  (7) 

Here the nth entries of JI  and MI  are J
nI  and M

nI , respec-
tively. The mth entries of EV  and HV , 1,...,m N ′= , are  

 incˆ ˆ( ), ( )E
m mV = − × ×n f r n E r  (8) 

 inc
1ˆ ˆ( ), ( )H

m mV η= − × ×n f r n H r  (9) 

where  ,⋅ ⋅  denotes the standard inner product. The (m,n)th 
elements of the interaction matrix follow from 

 , ˆ ( ), [ ]( )i mn m i nT = ×n f r f r  (10) 

 , ˆ ( ), [ ]( )i mn m i nK = ×n f r f r  (11) 

The CPU and memory costs for directly solving (7) via 
Gaussian elimination or LU factorization scale as 3( )O N  and 

2( )O N , respectively. Below, a butterfly-based hierarchical 
LU factorization scheme that reduces these requirements to 

1.5( log )O N N  and 2( log )O N N  is outlined.  The scheme 
consists of two steps: filling/compressing and hierarchical 
LU factorization of the interaction matrix.     

2.2  |  Matrix Filling/Compression 
The solver constructs a compressed representation of the 

interaction matrix in (7) via (i) recursive matrix decomposi-
tion and (ii) butterfly compression of off-diagonal blocks.  

Step (i) recursively bisects Γ  ML  times until the fin-
est-level subscatterers contain (1)O  basis functions. At level 

M1 ,l L≤ ≤  there are 2 l  level l−  subscatterers, each con-
taining roughly 2 lN ′  basis functions. Two level l−  sub-
scatterers constitute a far-field pair if their geometric centers 
are separated by at least 1 4χ< <  times the sum of their 
circumscribing radii and their parent subscatterers do not 
form a far-field pair; two level ML−  subscatterers that do not 
form a far-field pair constitute a near-field pair.  

There are two unknowns ( J
nI  and M

nI ) and two tested 
fields ( E

nV  and H
nV ) associated with each function ( )nf r .  It 

follows there are four blocks in (7) associated with each 
subscatterer pair. To efficiently compress all blocks associ-
ated with one far-field pair, rows and columns in the interac-
tion matrix in (7) are permuted, resulting in the following 
system of equations: 

 .=ZI V   (12) 
Here 1 1( , ,..., , )J M J M T

N NI I I I′ ′=I , 1 1( , ,..., , )E M E M T
N NV V V V′ ′=V  

and 

   
2

1

1

2

1 2 1 2

1 2 1 2

.T

η
η

η
η

 − −
 =
  

T + T K K
Z S S

K + K T + T
  (13) 

And S denotes the permutation matrix that mixes the com-
ponents of JI  and MI  into I . In what follows, Z  is termed 
the reordered interaction matrix. The recursive decomposi-
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FIGURE 1    Matrix format of butterfly-based direct solver. 
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tion of Γ and unknown/field reordering procedures induce a 
hierarchical partitioning of the interaction matrix Z  that is 
illustrated in Figure 1 for M 7L =  and Γ  modeled by a 2D 
curve. 
 Step (ii) classically computes blocks representing 
near-field interactions via (10)-(11) and butterfly-compresses 
blocks representing far-field interactions. Consider a m n×  
level- l  far-field block O

SZ  in Z  with / 2ln m N≈ ≈ . Note 
that odd/even indices in set S  point to electric/magnetic 
unknowns J

nI / M
nI ; similarly odd/even indices in set O  point  

to measured fields in E
nV / M

nV . The butterfly scheme first 
divides O

SZ  into judiciously-selected submatrices 
d
j

d
i

O
S

Z : for 
each 0 Md L L l≤ ≤ = − , 1,..., 2L di −= , 1,..., 2dj = , d

iS  and 
d
jO  are subsets corresponding to level- l L d− +  and level- 

( l d− ) subscatterers, respectively. It can be shown that the 
(butterfly) rank r  of each submatrix 

d
j

d
i

O
S

Z  is approximately 
constant23. Upon computing LR approximations to all 
2 ( 1)L L +  submatrices, the butterfly representation B  of 

O
SZ  consists of the product of 2L +  sparse matrices 
   1LB = PR R Q  (14) 

where P  and Q  are block diagonal projection matrices, and 
the interior matrices dR , 1,...,d L=  are also block diagonal 
after (predefined) row permutation:  

 1 2
diag( ,..., )L=P P P  (15) 

  1 2
diag( ,..., )L=Q Q Q  (16) 

 1,1 ,2
diag( ,..., ).Ld d d d −=D R R R  (17) 

Here, dD  is the  permutation matrix that yields dR  block 
diagonal, and the diagonal blocks in (15), (16) and (17) have 
approximate dimensions ( / 2 )Lm r× , ( / 2 )Lr n× , and 

2r r×  respectively (Figure 1).  
It can be shown that construction and storage of one sub-

matrix O
SZ  requires only ( log )O n n  CPU and memory re-

sources, and that the overall memory and CPU requirements 
associated with the matrix filling phase scale as 

2( log )O N N .  

2.3  |  Hierarchical LU Factorization  
The second phase of the proposed solver constructs a but-

terfly-compressed hierarchical LU factorization of the reor-
dered interaction matrix. The crux of the factorization process 
relies on the experimental observation that all blocks in the 
LU factors dimension-wise matching far-field blocks in Z  
are butterfly compressible with similar butterfly ranks. The 
solver arrives at a compressed representation of the LU fac-
tors of Z  using randomized butterfly reconstruction meth-
ods to represent compositions of existing butterflies (addi-
tions, multiplications, and solutions of triangular systems) in 
terms of new butterflies. 

The factorization process starts by partitioning and LU 
factorizing the impedance matrix Z  as  

 11 12 11 11 12

21 22 21 22 22

     
= =     

     

Z Z L U U
Z

Z Z L L U
        (18) 

The process proceeds as follows: (i) LU factorize 

11 11 11=Z L U ; (ii) compute 1
12 11 12

−=U L Z  via back substitu-
tion; (iii) compute 1

21 21 11
−=L Z U  via back substitution; (iv) 

update 22 22 21 12
ˆ = −Z Z L U ; and (v) LU factorize 

22 22 22
ˆ =Z L U . The constituent blocks in these five procedures 

are further partitioned until 11Z , 12Z , 21Z , 21L / 12U , 22Ẑ  in 
steps (i)-(v) dimension-wise match those in Z . Conse-
quently, the hierarchical partitioning of the LU factors of Z  
matches exactly that of Z  (Figure 1).  

During the recursive factorization process (i)-(v), there are 
essentially three types of block operations that are not recur-
sive in nature: 

 1 2= +B B B  (19) 
  1 1or  = ⋅ = ⋅B B A  B A B  (20) 

 1 1
1 1

ˆ ˆor  .− −= ⋅ = ⋅B L B   B B U  (21) 

Here 1B  and 2B  are butterfly-compressed matrices, and A , 
L̂  and Û  are hierarchical partitioned full, lower triangular, 
and upper triangular matrices with butterfly-compressed 
blocks. It is assumed and experimentally observed that all 
B ’s in (19)-(21) that dimension-wise match far-field blocks 
in Z  can be butterfly-compressed.  To arrive at butterfly 
approximations for all B ’s, the solver uses a fast randomized 
scheme that relies on the information gathered by (rapidly) 
multiplying B  (i.e. the right hand sides in (19)-(21)) and its 
transpose to sparse random vectors21. 
 The memory requirement of the factorization step scales as 

2( log )O N N   due to the observation that butterfly ranks in 
(19)-(21) are approximately constant; the computational cost 
of the factorization step scales as 1.5( log )O N N  because 
each randomized butterfly operation (19)-(21) requires 

1.5( log )O n n  CPU time.  A detailed complexity analysis can 
be found in21.  

Once factorized, the inverse of the impedance matrix can 
be rapidly applied to excitation vectors using partitioned 
forward/backward substitution3.  

   

3  |   NUMERICAL RESULTS  
This section presents numerical results that demonstrate 

the efficiency and accuracy of the proposed solver. Simula-
tions are performed on a cluster of eight-core 2.60 GHz Intel 
Xeon E5-2670 processors with 4 GB memory per core. In all 
examples, region 1 is vacuum, i.e.  1 0ε ε=  and 1 0µ µ= , the 
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permittivity and permeability of the scatterers are 2 03ε ε=  
and 2 0µ µ= , and χ  is set to 2. 

3.1  |  Sphere 
First, the memory and CPU requirements of the proposed 

solver are verified via its application to the analysis of scat-
tering from a 1m-radius dielectric sphere. The frequency 

(2 )f ω π=   and number of unknowns N  are changed from 
0.4 GHz and 12,072 to 3.2 GHz and 725,274, respectively. 
The solver utilizes 16 processors. The memory required to 
store Z  and its LU factors, plotted in Figure 2(a), scale as 

2( log )O N N . The CPU time required for factorizing Z ,  
shown in Figure 2(b), clearly adheres to the predicted 

1.5( log )O N N  scaling law. 
Next, the accuracy of the proposed solver is demonstrated 

via computation of the sphere’s bistatic radar cross section 
(RCS) for f = 3 GHz and 961,008N = . Matrix Z  is hier-
archically partitioned using 10 levels after setting the fin-
est-level block dimension to approximately 938. The memory 
required for storing Z and its LU factors, and the CPU time 
required for filling and factorizing Z  are listed in Table I. 
The solver requires peak memory of 853 GB and total CPU 
time of 82.6 h on 64 processors. The HH-polarized bistatic 
RCS in directions along 90θ = °  and [0,180]ϕ = °  for a total 
of 10,000 directions are computed and compared with the 
Mie series solutions in Figure 3. Results agree very well.   

3.2  |  NASA Almond  
Next, the proposed solver is applied to the analysis of 

scattering from a NASA almond enclosed by a fictitious box 
of dimensions 25.25 cm 9.76 cm 3.25 cm× × . The almond is 
illuminated by a  f = 40.0 GHz  plane wave that is either x- or 
z-polarized  and propagating along y. Matrix Z  with 

722,712N = is partitioned using 9 levels by setting the fin-
est-level block dimension to approximately 1411. The solver 
requires peak memory of 348 GB and total CPU time of 26.6 
h using 64 processors (see Table I). The electric and magnetic 
currents induced on the almond are plotted in Figure 4.   

3.3  |  Helicopter 
Finally, the proposed solver is applied to the analysis of 

scattering from a “plastic helicopter” model residing in a 
fictitious box of dimensions 18.60 m 21.96 m 7.15 m× × . 
The helicopter is illuminated by a  f = 0.5 GHz  plane wave 
that is either x- or z-polarized  and propagating along the y 
direction.  The impedance matrix with 559,992N =  is hier-
archically partitioned with 10 levels upon setting the size of 
the finest-level block dimension to approximately 546. The 
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FIGURE 2    (a) Memory costs for storing Z  and its LU factorization and 
(b) CPU times for the factorization phase using the proposed solver. 
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FIGURE 3    HH bistatic RCS of the sphere at 3 GHz computed at 90θ = °  
and [0,180]ϕ = °  using the proposed solver and the Mie series. 
 
TABLE 1   The technical data for the setups and solutions of the largest 
scattering problems considered in this paper.  
  

 Sphere Almond Helicopter 

Max dimension 2 m (20 λ ) 25 cm (33 λ ) 22 m (36 λ ) 

Unknown N  961,008 722,712 559,992 

Memory: Z  493.1 GB 162.3 GB 111.5 GB 

Memory: LU factor 853.5 GB 348.1 GB 383.1 GB 

Matrix filling time 794 s 1.6 h 535 s 

Factorization time 82.6 h 26.6 h 60 h 

Solution time  136 s 37 s 65 s 
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memory requirements for storing Z and its LU factorization, 
and the CPU times for filling and factorizing Z  as well as 
the backsubstitution phases are listed in Table I. The solver 
requires 383.1 GB memory and 60 h CPU time using 64 
processors. The electric and magnetic currents on the heli-
copter are shown in Figure 5.   

4  |   CONCLUSIONS  
A fast butterfly-based LU factorization scheme for solving 

the PMCHWT equations pertinent to the analysis of scatter-
ing from electrically large homogenous dielectric-magnetic 
objects was presented. The proposed solver re-orders and 
butterfly-compresses blocks in the interaction matrix and its 
LU factors. Importantly, the observed CPU and memory 
complexities of the resulting solver scale as 1.5( log )O N N  and 

2( log )O N N , respectively.  Current efforts are aimed at re-
ducing the leading constants implicit in the above estimates, 
to allow application of the solver to much bigger objects.  
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FIGURE 5   Current density (in dB) induced on the almond computed by 
the proposed direct solver: (a) 1η J  and (b) M  induced by a x-polarized and 
-y-propagating incident electric field, and (c) 

1

η J  and (d) M  induced by a 
z-polarized and -y-propagating incident electric field.    

 
FIGURE 6   Current density (in dB) induced on the helicopter computed by 
the proposed direct solver: (a) 1η J  and (b) M  induced by a x-polarized and 
-y-propagating incident electric field, and (c) 

1

η J  and (d) M  induced by a 
z-polarized and -y-propagating incident electric field.    
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