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Abstract—This paper presents a computationally efficient
framework for identifying resonance modes of 3D radio-
frequency (RF) cavities with damping waveguide ports. The
proposed framework relies on surface integral equation (IE)
formulations to convert the task of resonance detection to the
task of finding resonance frequencies at which the lowest few
eigenvalues of the system matrix is close to zero. For the linear
eigenvalue problem with a fixed frequency, we propose leveraging
fast direct solvers to efficiently invert the system matrix; for
the frequency search problem, we develop a hybrid optimization
algorithm that combines Bayesian optimization with down-hill
simplex optimization. The proposed IE-based resonance detection
framework (IERD) has been applied to detection of high-order
resonance modes (HOMs) of realistic accelerator RF cavities to
demonstrate its efficiency and accuracy.

Index Terms—RF cavity, eigen solver, fast direct solver,
Bayesian optimization, high-order resonance mode, down-hill
simplex algorithm.

I. INTRODUCTION

H IGH-quality radio-frequency (RF) cavities are critical
components for high energy particle accelerators de-

veloped at national facilities and laboratories [1]–[3]. RF
cavities are usually excited by a time-harmonic source field
operated at the working resonance frequency to support a
particular electromagnetic field pattern (called the fundamental
resonance mode), which provides stable acceleration of the
particle bunches passing through the cavity. However, the
transient bunch, which can be treated as e.g., a Gaussian
wavelet packet in time, can also excite undesired high-order
resonance modes (HOMs) at higher resonance frequencies
which can cause deterioration of beam quality and severe
damage to the device. These HOMs are often suppressed by
adding damping waveguide ports to the cavity, which couple
the HOMs from the cavity to the external absorbing loads.
Recall that the quality (Q) factor of a cavity is defined as
the ratio of stored energy in the cavity and the dissipated
power per cycle by the cavity wall losses and/or damping ports.
While the fundamental mode operates with high Q factors, the
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HOMs requires sufficiently low Q factors so that they cannot
be established in practice.

Given a fixed design with cavity geometry, material, port
position and port shapes, the fundamental mode and HOMs
and their resonance frequencies need to be accurately and
efficiently modeled by numerical tools. The most commonly-
used numerical method for realistic 3D cavity modeling is
the finite element method (FEM) [4]–[6], which formulates
the problem as an eigenvalue problem whose eigenvalues
and eigenvectors are respectively the resonance frequencies
and resonant electrical fields in the cavity volume (or called
eigenmodes). In this paper, we use the terms “eigenmode”
and “resonance mode” interchangeably. However, FEM faces
the following computational challenges: (1) The FEM method
requires spatial discretization of the entire cavity volume with
dense meshes and high-order basis functions to resolve the
resonance modes, which lead to large numbers of unknowns
and high CPU/memory usage. (2) When waveguide boundary
conditions are used for the damping ports or the dissipative
power loss is considered, the FEM method leads to a nonlinear
eigenvalue problem, and linearization techniques such as New-
ton’s method [7], [8], contour integral methods [9], [10], and
rational Krylov methods [11]. However, these methods suffer
from either lack of convergence and/or high computational
costs. Moreover, the FEM method tends to become less
accurate when the resonance frequency lies near or below the
lowest cutoff frequencies of the ports. (3) Although the Q
factors can be computed using the FEM method, they cannot
provide information about accuracy of the computed resonance
frequencies regarding uncertainty in design parameters and
numerical models.

This paper considers the surface integral equation (IE)
method as an alternative to the FEM method to address the
abovementioned computational challenges. The IE method
formulates the problem as searching for the frequencies at
which the system matrix’s smallest few eigenvalues are close
to zero. In contrast to FEM, the IE method only requires spatial
discretization of the cavity boundary leading to much smaller
numbers of unknowns. In addition, at each trial frequency,
a linear dense eigenvalue problem needs to be solved and
traditional linear eigen solvers can be directly applied. Last
but not least, the IE method naturally provides bandwidth
information about the computed resonance frequencies by
investigating a sequence of trial frequencies and the asso-
ciated eigenvalues. That being said, the IE methods have
been primarily considered only for traveling wave modeling
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[12]–[15] and characteristic mode analysis (CMA) [16]–[18],
and the use of IE methods for resonance modeling remains
largely unexplored [19], [20]. This is due to the following two
computational difficulties: (1) Unlike traveling wave model-
ing and CMA, the resonance problem leads to intrinsically
large-scale and ill-conditioned linear systems at resonance
frequencies of the HOMs. Although fast iterative algorithms
such as fast multipole methods [21] have been applied to
large-scale CMA [22], they become computationally infeasible
for resonance problems. This is due to the ill-conditioned
IE matrix near the resonance frequencies which, even with
good preconditioners, lead to large numbers of matrix-vector
multiplications. (2) The identification of the resonance fre-
quencies is typically performed with grid search or frequency
sweep, which becomes computationally very expensive with
fine frequency steps [19]. Optimization algorithms that aim at
minimizing the eigenvalues corresponding to each mode can
be considered instead of grid search, but the objective function
w.r.t frequency exhibits sharp minimum for high-Q modes and
flattened minimum for low-Q ones, and existing optimization
tools either require too many samples to capture all resonance
modes or suffer from convergence issues for these complex ob-
jective functions. Therefore IE methods that can both robustly
solve the eigenvalue problems with given trial frequencies and
efficiently propose promising trial frequencies are called for.

The proposed IE-based resonance detection framework
(IERD) framework addresses the abovementioned two chal-
lenges by leveraging fast direct IE solvers and developing
hybrid optimization algorithms. First, we rely on the shift-
and-invert implicitly restarted Arnoldi method (IRAM) [23]
for solving the eigenvalue problem for the smallest few eigen-
values, which requires supplying the inverse of the dense IE
matrix. The matrix inverse is computed with fast direct solvers
such as hierarchically off-diagonal low-rank (HODLR) matri-
ces [24] and hierarchically off-diagonal butterfly (HODBF)
[25], among the more general class of hierarchical matrix
algorithms [26]–[30]. For working modes and the first few
HOMs, the cavity remains electrically small and low-rank-
based direct solvers, e.g., HODLR, are very efficient; for
HOMs with higher frequencies, the cavity becomes electrically
large. Therefore, the equation system show certain patterns for
which butterfly-based direct solvers, e.g., HODBF becomes
computational more efficient. In fact, butterfly-based direct
solvers have been successfully applied to surface IE [25], [31],
volume IE [32], and differential equation [33]-based large-
scale electromagnetic simulations. The use of HODLR and
HODBF direct solvers can significantly improve the robustness
and efficiency for solving the eigenvalue problem with fixed
frequencies. Next, we propose a hybrid frequency search
algorithm that combines the global search algorithm such
as Gaussian process (GP)-based Bayesian optimization (BO)
[34] and local search algorithm such as the down-hill sim-
plex method (also known as the Nelder–Mead method) [35].
Our proposed algorithm first uses surrogate-based Bayesian
optimization to locate the resonance regions in the frequency
band of interest and then uses down-hill simplex algorithm to
refine the optimal frequency within region. Both steps require
only smaller numbers of trial frequencies compared with brute-

-= +

Fig. 1. Illustration of a RF cavity example with a waveguide port, decomposed
as an interior problem and an exterior problem. It is assumed that the incident
field Ei = eje

ıkz has a single waveguide mode.

force frequency sweep or grid-search scheme.
The rest of this paper is organized as follows. Section

II formulates the resonance detection problem as an IE-
based eigenvalue problem with trial frequencies. The fast
direct solvers for accelerating the eigenvalue problem for each
frequency is summarized in Section III and the proposed
hybrid Bayesian optimization and down-hill simplex algorithm
is detailed in Section IV. Section V presents a few canonical
and real-life numerical examples to demonstrate the efficiency,
accuracy and robustness of the proposed IERD framework.

II. FORMULATION

Consider the example of a RF cavity with a semi-infinite
waveguide port in Fig. 1. In practice, the port serves as a
damping port with a finite length and absorbing materials
at the end. For illustration purposes, we initially consider a
single port in this section. Later, in Section V, we demonstrate
the applicability of IERD to cases with multiple ports by
providing numerical results. The cavity is filled with material
of permittivity ε0, permeability µ0, and intrinsic impedance
η0 =

√
µ0/ε0. To modify the cavity geometry and material

properties for a specific problem, adjust the values of ε0, µ0,
and η0 accordingly. Additionally, you can update the cavity
and waveguide port geometries by changing their dimensions
and shapes in the mathematical formulation. In order to derive
a formulation for the resonance modes, it is assumed that
the cavity is excited by an incident field {Ei(r),Hi(r)} of
frequency f (or wavenumber k) through the port. The incident
field excites surface equivalent source that produces a scattered
field {Es(r),Hs(r)} in the cavity.

The problem can be treated as the superposition of an
interior problem and an exterior problem. The interior problem
consists of a closed cavity with surface S = Si + Sp, where
Si corresponds to the open surface of the original open cavity,
and the added boundary Sp corresponds to the surface of the
port that encloses Si. The scattered field {Es(r),Hs(r)}
is produced by a surface electric current density J(r) for
r ∈ S and a surface magnetic current density M(r) for
r ∈ Sp (see Fig. 1 middle). The exterior problem consists
of the semi-infinite wavguide with the incident electric field
Ei = eje

ıkz , where z is the local coordinate with z = 0 at
Sp, and ej is the normalized eigenvector of the waveguide (see
Fig. 1 right). ej can be TM or TE modes, and can have an
analytical expression for rectangular or circular waveguides, or
can be numerically computed for irregular-shaped waveguides.
The scattered field {Es(r),Hs(r)} can be reproduced by
introducing an additional surface magnetic current density
−M at Sp.
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Enforcing the boundary conditions for electric fields on
Si and Sp and magnetic fields on Sp leads to the following
equations:

n̂× n̂× T [J ](r)− n̂×K[
M

η0
](r)− Zs

η0
J(r) = 0, r ∈ Si

(1)

n̂× n̂× T [J ](r)− n̂×K[
M

η0
](r) + n̂× M(r)

η0
= 0, r ∈ Sp

(2)
1

η0
n̂× J(r) +

1

2

∑
i

ẑ × ei(r)

ηiη0

∫
Sp

dr′(ẑ × ei(r
′)) ·M(r′)

=
ẑ × ej(r)

ηjη0
, r ∈ Sp (3)

Here, n̂ denotes the inward surface normal, ẑ denotes the
unit vector along the waveguide. Zs = (1 + ı)

√
πfµ0

σs
is the

surface impedance of the cavity wall material. Here σs is the
electric conductivity of the material and we use 5.80 × 107

S/m of Copper in this paper. ηi and ei(r), i = 1, 2, . . .,
are the impedance and normalized tangential electric field
of waveguide mode i with cutoff frequency fc,i < f . Note
that for regular-shaped wave guide ports such as circular
or rectangular waveguides, ei(r) are analytically defined;
otherwise they can be numerically computed and tabulated
from e.g., FEM methods. In (5), the integral operators T and
K are:

T [X](r) = ık

∫
S

dr′X(r′) ·
(
I − 1

k2
∇∇′·

)
g(r, r′) (4)

K[X](r) = n̂×
∫
S

dr′X(r′)×∇′g(r, r′) (5)

To numerically detect the resonance modes, J is discretized
with NJ local basis functions fn(r), n = 1, . . . , NJ such
as the Rao-Wilton-Glisson (RWG) functions [36] or the
high-order (pth order) Graglia-Wilton-Peterson (GWP(p)) ba-
sis functions [37] (RWG is essentially GWP(0)), M/η0 is
discretized with NM mode basis functions ẑ × en, n =
1, . . . , NM with NM denotes the number of propagating
modes of the port whose cutoff frequencies fc,n < f .

J(r) =

NJ∑
n=1

IJnfn(r) (6)

M(r)

η0
=

NM∑
n=1

IMn ẑ × en(r) (7)

Next we test (1) and (2) with fn, (3) with ẑ × en and set
the right-hand side (RHS) of (3) to 0. Note if f is a resonance
frequency in the band of interest [fmin, fmax], the system will
require no excitation of the RHS. The following eigenvalue
system is constructed:[ ¯̄T ¯̄K

¯̄C ¯̄D

] [
ĪJ

ĪM

]
≈ 0̄. (8)

Note that “≈” instead of “=” is used to account for numerical
errors in surface discretization and matrix evaluation. In (8),

ĪJ and ĪM are collections of IJn and IMn , respectively. The
(m,n)th entry of the sub-matrices is:

Tmn = ⟨fm(r), n̂× n̂× T [fn](r)⟩ −
Zs

η0
⟨fm(r), δi(r)fn(r)⟩

(9)
Km,n = ⟨fm(r),−n̂×K[ẑ × en](r)⟩+ ⟨fm(r), ẑ × en(r)⟩

(10)

Cm,n = ⟨ẑ × em(r),
1

η0
n̂× fn(r)⟩ (11)

Dm,n =
δm,n

2ηm
. (12)

Here, δi(r) = 1 if r ∈ Si and 0 elsewhere, δm,n is the
Kronecker delta function, and ⟨·, ·⟩ denotes standard inner
product. The system in (8) can be written as ¯̄Z(f)Ī ≈ 0̄ with
Ī = [ĪJ ; ĪM ] and ¯̄Z = [ ¯̄T, ¯̄K; ¯̄C, ¯̄D]. Therefore, the problem
of resonance detection reduces to finding the trial frequency f
at which the smallest few eigenvalues of ¯̄Z are close to 0. The
physical meaning of such a formulation is that at resonance,
the system can sustain an approximately non-decaying surface
electrical current density without any external excitation (i.e.,
setting the RHS of the linear system to 0̄).

The proposed IERD framework aims at the accurately
and efficiently finding all resonance modes in the frequency
band of interest. IERD relies on a fast direct IE solver-
based linear eigensolver to compute these eigenvalues for each
trial frequency, as described in Section III, and an efficient
optimization algorithm to search for the resonance frequencies
of multiple modes, as detailed in Section IV.

III. FAST DIRECT METHOD-BASED EIGENSOLVER

For a fixed frequency f , the proposed IERD framework
utilizes the shift-and-invert IRAM method from ARPACK [23]
with zero shift, which requires the input of the inverse operator
¯̄Z−1. IRAM is a fast iterative algorithm that can be used to
quickly compute the first few eigenvalues of interest. When the
number of required eigenvalues is small, IRAM typically con-
verges in a small number of iterations. ARPACK returns the
smallest few eigenvalues and their eigenvectors among which
some eigenvectors do not correspond to a physical resonance,
but rather artifact from numerical discretization errors. These
eigenvectors are characterized as sparse vectors with few
large elements and small ones elsewhere, representing non-
physical and “local” resonance near shape geometry regions.
The sparsity of the eigenvectors can be measured by ||Ī||1
given that ||Ī||∞ = 1. Hence only those eigenvectors Ī with
||Ī||1/||Ī||∞ > ϵnorm for a prescribed threshold ϵnorm (e.g.,
ϵnorm = 1000) are considered to be physically meaningful
resonance vectors. In this paper, we use “eigenmodes” to de-
note these physically meaningful resonance vectors. Note that
those eigenvectors with ||Ī||1/||Ī||∞ < ϵnorm cannot be called
eigenmodes as they are due to numerical modeling errors. One
frequency f may yield no eigenmode or multiple eigenmodes.
Ideally assuming no material loss, power damping, numerical
error and degenerate eigenmodes, each eigenmode has only
one resonance frequency (i.e., ¯̄Z is singular at the resonance
frequency and the Q factor becomes infinity). In practice,
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however, a cavity can operate at near-resonance regime (i.e.,
slightly perturbed resonance frequency) with the same eigen-
mode. Therefore, one trial frequency f can detect multiple
eigenmodes when it’s in the near-resonance regime of multiple
eigenmodes.

HODLR and HODBF are two types of rank-structured fast
direct solvers for fast computing ¯̄Z−1 implemented in the
software ButterflyPACK [38]. These solvers first reorder the
matrix ¯̄Z and partition the matrix into O(logN) levels. At each
level off-diagonal blocks representing non-self interactions are
represented as low-rank or butterfly formats with a prescribed
compression tolerance. Next, ¯̄Z−1 is computed also with
compressed representations using deterministic or randomized
operations [39]. Once computed, a function ȳ = ¯̄Z−1x̄
with arbitrary input vector x̄ can be supplied to ARPACK.
Note that ¯̄Z−1 is approximately computed and preconditioned
Krylov solvers may be needed for this function. However,
preconditioned iterative solvers can significantly slow down
the ARPACK computation due to significantly more numbers
of matrix-vector multiplication required by a sequence of
Arnoldi factorization from ARPACK and instead we compute
¯̄Z−1 with small compression tolerance and directly pass it
to ARPACK without iterative solvers. It’s worth mentioning
that to properly reorder the matrix ¯̄Z, we associate each
unknown with a Cartesian coordinate and use e.g., KD tree
clustering algorithms or cobblestone-like schemes [40]. For
each flat/curvilinear triangle, there are (p+3)(p+1) associated
GWP(p) bases fn(r). We use the edge centers as the coordi-
nates for the first 3(p+1) bases and triangle center for the next
p(p+1) bases. For each basis function ẑ×en(r), we use the
port center as the coordinate. This list of NJ+NM coordinates
is then passed to the clustering algorithm to compute the
matrix reordering.

Note that in the context of 3D surface IE, HODLR dis-
plays asymptotically unfavorable computational complexity
for HOM modeling, as it employs both weak admissibility
and low-rank compression (formats not intended for high-
frequency Green’s functions). However, HODLR remains
highly efficient for the first few HOMs of a cavity when
considering moderate system sizes (e.g., N < 20, 000), and as
such, we employ HODLR as the default direct solver in IERD.
For HOMs of very high frequencies, we can switch to HODBF
whose CPU and memory complexities are asymptotically
superior. See Section V-A for numerical results.

IV. AUGMENTED BAYESIAN OPTIMIZATION FOR
SEARCHING RESONANCE FREQUENCIES

The section describes the proposed efficient frequency
search algorithm (Algorithm 1) that combines the global
convergent behavior of BO and local refinement behavior of
the down-hill simplex algorithm.

Assume that within the frequency band of interest
[fmin, fmax] there are a total of Nmod modes, and the modes
indexed by m are sorted by their resonance frequency fm

in ascending orders. For each mode m, there is at most one
eigenpair (em(f), Ī) returned by ARPACK at any frequency
f . If no such eigenpair for mode m exists at f , we simply let

em(f) = 1. Such a function em(f) has only one global yet
very sharp minimum at fm, particularly for resonance modes
without efficient power damping (i.e., with high Q factor).
Efficient optimization algorithms need to efficiently locate the
resonance regions with em(f) < 1 and shrink to the global
minimum fm for all resonance mode m.

Let {(fm
i , emi )} be the samples of em(f). In BO [34], [41],

we assume a GP model ym(f) for em(f) such that ym(f) ∼
GP (µ,Σ) with mean µ = 0 and covariance

Σ(f, f ′) = σ exp(
(f − f ′)2

l
) + dδ(f, f ′) (13)

where σ, l, d are hyperparameters. From the samples
{(fm

i , emi )}, these hyperparameters can be learned by opti-
mizing the log-likelihood function of the GP model, known as
the process of fitting a GP model to data. Once fitted, the GP
surrogate can be used to quickly predict the mean and variance
(or standard deviation) of em(f) at any unknown frequency f .
The mean and variance information can be used to define an
acquisition function such as the Expected Improvement (EI),
which is used to propose new trial frequency f∗. IERD will
then evaluate f∗ with ARPACK to append the new sample
(f∗, em(f∗)) to {(fm

i , emi )}, such as the Fun Eval function
in Algorithm 1. Note that everytime called, Fun Eval will
add a new sample to all detected modes so far, depending on
the eigen pairs returned by ARPACK. More specifically, the
returned eigenvectors and those from existing modes can be
grouped with the mode tracking technique [16] by computing
their inner products. Two eigenvectors Ī and Īm are the same
eigenmode only when Ī∗ · Īm > ϵdot for a prescribed threshold
ϵdot (ϵdot = 0.7−0.9). Moreover, the recorded eigenvectors for
existing modes Īm are replaced by Ī when Ī∗ · Īm > ϵdot and
the new eigenvalue e < mini e

m
i (see Line 35 of Algorithm

1). Note that for each trial frequency f , the Fun Eval function
will generate a sample (fm

i , emi ) for all modes, but only those
with emi returned by ARPACK (i.e., emi < 1) denote a detected
resonance.

The above procedure is repeatedly executed until the total
number of affordable frequency trials per mode has reached
a prescribed number nBO (See Line 9 of Algorithm 1). The
advantage of BO for IERD is that BO requires typically a
much smaller number of trial frequencies compared with naive
frequency sweep algorithms. That said, the objective function
em(f) for each mode exhibits a sharp global minimum and
the smooth and stationary kernel in (13) is not suited to detect
the true non-smooth minimum [42], [43].

To improve the search quality, we augment BO with a down-
hill simplex refinement inside each resonance region using BO
samples (fm

i , emi ) (see Line 19 of Algorithm 1). The down-hill
simplex optimization is a very efficient derivative-free local
algorithm requiring a small number of function samples in
our application. However, this algorithm heavily rely on good
initial guesses and search regions. Given that the objective
functions em(f) has a pre-defined “V”-like shapes, we can
leverage BO samples to define the lower and upper frequency
bounds for the simplex search. As an illustration, Fig. 2 shows
three possible configurations of the boundary (shown in red
circles) and optimal (shown in red squares) BO samples and
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Other BO samples

BO optimum Boundary BO sample

Simplex search range

BO surrogate Possbile true function 

Fig. 2. Identification of the search range for down-hill simplex based on the
BO samples {(fm

i , emi )}, particularly, the three possible relative locations
of optimal (fm

min = argmini e
m
i ) and boundary BO samples (min fm

i and
max fm

i ) shown in the left, middle and right.

potential locations of the global minimum. Note that standard
GP surrogate model in BO (shown in orange curves) cannot
represent the true objective function sufficient accuracy near a
non-smooth optimum. More specifically, from the BO samples
(fm

i , emi ) of one mode let fm
min = argmini e

m
i . If fm

min appears
in between min fm

i and max fm
i , the simplex search range is

(fSX
min, f

SX
max) = (min fm

i ,max fm
i ); otherwise if fm

min equals
min fm

i , the simplex search range is (fSX
min, f

SX
max) = ((1 −

α)fm
min, fnr

) where α = 0.004 is a small constant and fnr

is the first trial frequency to the right of fm
min; the case that

fm
min equals max fm

i is treated in a similar fashion. Together
with these search ranges, we can use their midpoints (fSX

min +
fSX
max)/2 as the initial guess to down-hill simplex. See Line 19

of Algorithm 1 for more details.
In our implementation, we use two Python packages: the

GPTune software [44] for the BO optimization and the SciPy
software [45] for the down-hill simplex algorithm. For each
trial frequency, the IE-based linear eigensolver (i.e., Butterfly-
PACK and ARPACK) is invoked from the Python code with
multiple MPIs ranks. Overall, the runtime for the proposed
IERD framework is at most (nBO +nSX)NmodTeigen, where
Teigen is the CPU time for each trial frequency f .

V. NUMERICAL RESULTS

This section provides several numerical examples to demon-
strate the efficiency, accuracy and robustness of the proposed
IERD framework for modeling resonance modes in both
canonical and realistic RF accelerator cavities. When the
cavity involves waveguide ports with irregular-shaped cross
sections, we use CST Studio Suite [46]’s 2D eigenmode
solver to precompute the basis functions z × ej(r). As the
reference, we also show computational results using CST’s
3D eigenmode solver [46] and the SLAC Omega3P eigenmode
solver [5], [6], both of which are state-of-the-art FEM solvers
for electromagnetic simulations. For Omega3P, we use the
quadratic eigenproblem formulation as described in [6].

All numerical experiments are performed on the Cori
Haswell system at NERSC. Cori Haswell is a Cray XC40
system and consists of 2388 dual-socket nodes with Intel
Xeon E5-2698v3 processors running 16 cores per socket. The
nodes are equipped with 128 GB of DDR4 memory and are
connected through the Cray Aries interconnect.

Algorithm 1 Hybrid BO and down-hill simplex optimization
for frequency search

1: Input:
2: nBO: number of trial frequencies per mode in BO
3: nSX : number of trial frequencies per mode in down-hill simplex
4: nAK : number of smallest eigenvalues for APRACK
5: (fmin, fmax): lower and upper bounds for the search
6: Output:
7: Nmod: number of resonance modes (initialized to 0)
8: (fm

i , emi ): frequencies and the eigenvalues of each mode m ≤
Nmod for all trials i. fm = argmini e

m
i is the resonance

frequency of mode m.

9: BO:
10: Generate n′

BO = nBO/2 random frequencies in [fmin, fmax].
For each frequency sample f , call Fun Eval(f ,Nmod)

11: ▷ The number of initial random samples n′
BO = nBO/2 is a

heuristic choice.
12: for n = 1 to nBO − n′

BO do
13: for each existing mode m ≤ Nmod do
14: Fit a GP model using data {(fm

i , emi )}
15: Use the EI function to propose the next trial frequency f
16: Fun Eval(f ,Nmod)
17: end for
18: end for

19: Downhill-simplex:
20: for each existing mode m ≤ Nmod do
21: fm

min = argmini e
m
i

22: if min fm
i < fm

min < max fm
i then

23: (fSX
min, f

SX
max) = (min fm

i ,max fm
i )

24: else if min fm
i == fm

min then
25: (fSX

min, f
SX
max) = ((1− α)fm

min, fnr ) ▷ fnr denotes the
right neighbor of fm

min, and α = 0.004 is a small constant.
26: else if max fm

i == fm
min then

27: (fSX
min, f

SX
max) = (fnl , (1 + α)fm

min) ▷ fnl denotes the
left neighbor of fm

min

28: end if
29: Call down-hill simplex algorithm with search range

[fSX
min, f

SX
max] for nSX samples. Each sample calls

Fun Eval(f ,Nmod).
30: end for

31: procedure FUN EVAL(f ,Nmod)
32: Call ARPACK with HODLR/HODBF for nAK smallest

eigenvalues. Ignore eigen pairs (e, Ī) with ||Ī||1/||Ī||∞ < ϵnorm.
33: for each existing mode m ≤ Nmod with eigen vector Īm do
34: if ∃ eigen pair (e, Ī) from ARPACK such that Ī∗ · Īm >

ϵdot then
35: Let Īm = Ī if e < mini e

m
i

36: Remove (e, Ī) from ARPACK results and Append
(f, e) to {(fm

i , emi )}
37: else
38: Append (f, 1) to {(fm

i , emi )}
39: end if
40: end for
41: for each remaining eigen pair (e, Ī) from ARPACK do
42: Nmod = Nmod + 1
43: Let (fNmod

1 , e
Nmod
1 ) = (f, e) and ĪNmod = Ī

44: end for
45: end procedure

A. Pillbox cavity with no port

In this subsection, we use a canonical pillbox cavity of ra-
dius 0.1 m and height 0.1 m to demonstrate the computational
efficiency of the proposed IERD framework. First, we validate
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Fig. 3. |J | (in dB) for the five resonance modes of the pillbox cavity model
detected at f=20.472 GHz with the proposed solver.

the accuracy of IERD by setting f =20.472 GHz, one of the
HOM frequencies without frequency search. This leads to a
diameter of 13.6 λ and we use a mesh of 213, 792 triangle
elements and N = NJ = 320, 688 RWG basis functions.
When no port is considered, the system matrix ¯̄Z reduces to
¯̄T of (8). The inverse ¯̄Z−1 is computed with the HODLR
direct solver with compression tolerance ϵ = 10−4 with 16
Cori nodes and supplied to ARPACK for the smallest 10
eigenvalues. The five detected eigenmodes J corresponding
to valid resonance are plotted in Fig. 3, which agree with the
analytical solutions.

Next, different solver options are compared to demonstrate
the efficiency of IERD. In addition to the HODLR direct
solver with RWG basis functions, we also tested the HODBF
direct solver with RWG basis functions, and the HODLR direct
solver with GWP(1) basis functions and curvilinear elements.
The system size N is kept similar across the three solvers and
technical data is listed in Table I. Note that the use of GWP(1)
basis on a coarser mesh can lead to significant reduction in
CPU time. This is mainly due to that the time for compressing
¯̄Z is dominated by that of computing entries of submatrices of
¯̄Z required by the adaptive cross approximation (ACA) [47].
Given similar numbers of unknowns N (and similar ranks),
GWP(1) requires a much less number of triangles than RWG.
As the matrix is assembled on a triangle basis, the entry
evaluation using GWP(1) becomes much faster. Also, the use
of HODBF instead of HODLR can significantly reduce the
memory usage for very high-order HOM modeling as HODBF
can achieve significantly better compression performance than
HODLR for high-frequency problems [32]. As the reference,
we also used the Omega3P solver on 16 Cori nodes to detect
resonance modes around 20.5 GHz with a tetrahedron mesh
of similar mesh density. This leads to a FEM matrix of 17
million unknowns and the CPU time is similar to our IERD
framework. That said, IERD with HODBF requires only 51.1
GB memory while Omega3P requires 1.56 TB memory.

B. Single-cell cavity with two rectangular waveguide ports

In this subsection, we demonstrate the efficacy of IERD
for a realistic single-cell cavity with two rectangular waveg-
uide ports, a simulation model for the third harmonic cav-
ity in the Advance Light Source at Lawrence Berkeley

TABLE I
COMPARISON OF THE HODLR AND HODBF-ENHANCED EIGEN SOLVER
FOR THE PILLBOX CAVITY MODEL WITH f=20.472 GHZ USING 16 CORI

HASWELL NODES.

Algorithm HODLR HODBF HODLR Omega3P
Diameter 13.6 λ 13.6 λ 13.6 λ 13.6 λ

#of triangles 213,792 213,792 53,240 -
#of tetrahedrons - - - 14,861,793
Max edge length 2.1 mm 2.1 mm 4 mm 2.7 mm

Basis RWG RWG GWP(1) Nedelec
#DoFs 320,688 320,688 266,200 17,185,459

Compression tolerance 10−4 10−4 10−4 -
Assembly&compress 39 min 8 min 12 min 16.8 min

Max. rank 4113 380 4037 -
Inversion time 54 s 38 min 52 s -
Total memory 250 GB 51.1 GB 200.8 GB 1.56 TB

Eigen solver time 13.4 s 49.2 s 11.9 s 7.4 min
#of detected modes 5 5 5 5
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Fig. 4. Eigenvalues of the first 15 resonance modes in [1.5 GHz, 3 GHz] for
the single-cell cavity computed by the proposed solver on 16 Cori Haswell
nodes. The rectangular waveguides are treated as closed boundaries. Each
color represents one detected resonance with trial frequencies (the dots)
suggested by the proposed solver. The detected resonance frequency for each
mode is the frequency where the eigenvalue attains the minimum. Note that
the frequency samples fm

i with emi = 1 are not plotted.

National Laboratory [48]. The two ports have an identi-
cal cross section and mode vectors for the waveguide are
ej = m

b cos nπx
a sin mπy

b x̂ − n
a sin nπx

a cos mπy
b ŷ for TEnm

modes and ej = n
a cos nπx

a sin mπy
b x̂ + m

b sin nπx
a cos mπy

b ŷ
for TMnm modes, where x, y and x̂, ŷ are local coordinates,
and a = 70 mm, b = 20 mm in this model. The lowest
cutoff frequency is fc = 2.141 GHz of the TE10 mode,
and we search the resonance modes in [1.5 GHz, 3 GHz].
Therefore NM = 0 when f < fc, and NM = 2 when
f ≥ fc (i.e., each port supports at most one propagating
mode). The model discretization leads to NJ = 25, 455
RWG basis functions and ARPACK computes the smallest
20 eigenvalues. Each trial frequency f requires about 35 s
CPU time when nAK=20 and 5 GB memory using HODLR
on 16 Cori nodes. First, we test the proposed frequency
searching algorithm by setting NM = 0 regardless of the
trial frequency (i.e., the waveguide ports are treated as closed
boundaries). Fig. 4 plots the eigenvalues corresponding to the
first 15 modes each represented by one color. Since closed
boundaries are used, each mode exhibits a narrow bandwidth
and a small minimum eigenvalue. Fig. 5 plots the eigenvalues
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Fig. 5. Zoomed view of the 15 resonance modes in Fig. 4. Each subfigure
shows one resonance mode numbered by its resonance frequency. The
black dots, curves and blue shaded areas represent the samples, predicted
mean and predicted standard deviation (std) by the Bayesian optimization,
respectively. The red curves represent samples generated by the downhill
simplex optimization. Note that the sensitivity or Q factor of the resonance
is reflected by the bandwidth of the data.

Fig. 6. |J | and surface |E| (in dB) for the 1st, 6th, 11th, and 15th resonance
modes for the single-cell cavity with closed boundaries at the ports computed
by the proposed solver. Note that the 1st mode represents the working mode.

for each mode separately. The black dots and red dots represent
trial frequencies selected by the Bayesian optimization and
down-hill simplex algorithm, respectively. Clearly, Bayesian
optimization can locate the resonance region for all modes
and down-hill simplex can effectively refine the resonance
frequencies to find the sharp minimum. The detected resonance
frequencies are labeled in the title of each subfigure. Fig. 6
shows the |J | and surface |E| for the 1st, 6th, 11th, and 15th

modes where 1st mode is the working mode. Here E is simply
computed by E = ∇·J

ıωϵ0
. Note that |E| = 0 on the ports.

Next, we test the proposed frequency search algorithm with
NM = 2 for f ≥ fc. Fig. 7 plots the eigenvalues corre-
sponding to the first 12 modes each represented by one color.
Note that the first three modes are below fc and 9th mode is
not damped efficiently via the wavguide ports. Therefore they
exhibit narrow bandwidths and small minimum eigenvalues.
All the other eight modes are damped efficiently and they

1.5 2 2.5 3
10

-9

10
-8

10
-7

Fig. 7. Eigenvalues of the first 12 resonance modes in [1.5 GHz, 3 GHz]
for the single-cell cavity with two rectangular waveguide ports computed by
the proposed solver on 16 Cori Haswell nodes. Each color represents one
detected resonance with trial frequencies (the dots) suggested by the proposed
solver. The detected resonance frequency for each mode is the frequency
where the eigenvalue attains the minimum. Note that most HOMs exhibit
larger eigenvalues and higher bandwidth as the power is efficiently damped
by the ports.

Fig. 8. Zoomed view of the 12 resonance modes in Fig. 7. Each subfigure
shows one resonance mode numbered by its resonance frequency. The
black dots, curves and blue shaded areas represent the samples, predicted
mean and predicted standard deviation (std) by the Bayesian optimization,
respectively. The red curves represent samples generated by the downhill
simplex optimization. Note that the sensitivity or Q factor of the resonance
is reflected by the bandwidth of the data.

exhibit higher bandwidths and larger minimum eigenvalues.
Fig. 8 plots the eigenvalues for each mode separately. The
black dots and red dots represent trial frequencies selected by
the Bayesian optimization and down-hill simplex algorithm,
respectively. For the aforementioned four modes (subfigures
(1)(2)(3)(9)) simplex refinement is critical for identifying more
accurate resonance frequencies. That said, for the other modes
whose power is damped efficiently, Bayesian optimization
itself can yield sufficiently accurate solutions. Fig. 9 shows
the |J | and surface |E| for the 4th, 7th, 8th, and 9th modes.
Note that the 9th mode doesn’t have sufficient power damping.

Furthermore, we measure the damping efficiency of each
mode by computing the ratio Pw/Pp, where Pw = 1

2Re{<



8 IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, VOL. P, NO. PP, MONTH YEAR

Fig. 9. |J | and surface |E| (in dB) for the 4th, 7th, 8th, and 9th HOMs
for the single-cell cavity with open boundaries at the ports computed by the
proposed solver. Note that the 4th, 7th, and 8th modes show efficient power
damping.
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Fig. 10. The power ratios Pw/Pp of all resonance modes in [1.5 GHz, 3
GHz] detected by CST and the proposed solver, and for all resonance modes
in [2.141 GHz, 3 GHz] detected by Omega3P, for the single-cell cavity with
two rectangular waveguide ports. The red vertical line denotes the lowest
cutoff frequency fc = 2.141 GHz of the ports, below which Pp = 0 and we
simply set Pw/Pp = 1.

J∗, ZsJ >} is the power dissipated at the cavity wall, and
Pp = 1

2Re{< J∗,M >} is the power damped from the
waveguide ports. The ratio is plotted in Fig. 10 for the 12
resonance modes. For modes detected below fc we simply
set Pw/Pp = 1 for plotting purpose. As the reference, the
ratios for the modes detected by CST and Omega3P are also
plotted. It’s worth mentioning that in this comparison study,
for modes above fc, CST doesn’t yield accurate resonance
frequencies. In contrast, Omega3P results agree better with
IERD for f > fc. That said, Omega3P cannot compute
resonance modes accurately for f ≤ fc and f ≈ fc when
waveguide port boundaries are used. For example, see the ratio
for the mode near f = fc.

C. Five-cell cavity with six H-shaped waveguide ports

In this subsection, the applicability of IERD to complicated
cavity geometry with irregular-shaped ports are demonstrated
using a five-cell cavity model with six H-shaped waveguide
ports with identical cross sections, a simulation model for
the Energy Recovery LINAC in Electron Ion Collider at
Brookhaven National Laboratory [49].

The cutoff frequencies for the first four propagating modes
of the ports are fc =0.776 GHz, 2.132 GHz, 2.132 GHz, and

2.185 GHz. The model discretization leads to NJ = 41, 223
RWG basis functions and ARPACK computes the smallest
100 eigenvalues. Depending on the trial frequency f , one can
have 0 ≤ NM ≤ 24 (i.e., each port supports at most four
propagating modes). Each trial frequency f requires about 85 s
CPU time when nAK=100 and 8.5 GB memory using HODLR
on 16 Cori nodes. We perform two frequency searches for [0.6
GHz, 1 GHz] and [2.1 GHz, 2.21 GHz], separately. IERD finds
22 and 35 resonances modes, respectively. Their eigenvalues
are plotted in Fig. 11 where each color denotes one eigenmode
and each dot represents one trial frequency. Again, high-
Q modes exhibit narrow bandwidths and smaller minimum
eigenvalues, and low-Q modes exhibit higher bandwidths and
larger minimum eigenvalues. Fig. 12 shows the surface |E| for
the first 14 modes in [0.6 GHz, 1 GHz] and 7 selected modes in
[2.1 GHz, 2.21 GHz] with their resonance frequencies shown
in the subfigure titles. Note that the first 5 modes are below
the lowest cutoff frequencies fc=0.776 GHz and the 5th mode
at 0.65244 GHz is the working mode.

Finally, the power ratios Pw/Pp are plotted in Fig. 13.
Note that CST cannot yet handle waveguide ports not aligned
with X/Y/Z plane in Cartesian coordinates and we only
compare with Omega3P. We added the eigenmodes detected
by Omega3P in [0.776 GHz, 1 GHz] which allows one
propagating mode per waveguide port. As can be seen from
Fig. 13, Omega3P and IERD results match well, but Omega3P
is missing a few resonance modes near fc =0.776 GHz.

VI. CONCLUSION

This paper presents IERD, an efficient Integral Equation
(IE)-based resonance detection tool for modeling RF cavities
with arbitrarily-shaped cross sections and damping waveguide
ports supporting multiple propagating modes. IERD leverages
fast direct solvers such as HODLR or HODBF from But-
terflyPACK, the ARPACK eigensolver to identify resonance
modes at specific trial frequencies, and a hybrid Bayesian
optimization and downhill simplex algorithm to minimize the
number of trial frequencies required. The tool also supports
higher-order basis functions and curvilinear surface mesh
representation.

It was shown with numerical experiments that IERD can
detect HOMs effectively and accurately over wide frequency
bands for realistic RF accelerator cavity modeling with sig-
nificant lower memory usage compared to FEM-based for-
mulations and tunable CPU requirement depending on the
frequency band and allowed maximum numbers of trial fre-
quencies.

IERD contributes to RF cavity modeling with a novel
approach that combines IE methods, fast direct solvers, and ad-
vanced optimization algorithms. Its novel hybrid Bayesian op-
timization and downhill simplex algorithm efficiently locates
resonance regions with minimal trial frequencies. Supporting
arbitrarily-shaped cross sections, damping waveguide ports,
higher-order basis functions, and curvilinear surface mesh,
IERD offers a practical and efficient solution for addressing
limitations of conventional techniques. Future work includes
efficient schemes for post-computing the electric fields inside
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Fig. 11. Eigenvalues of the first 22 resonance modes in [0.6 GHz, 1 GHz]
and the first 35 resonance modes in [2.1 GHz, 2.21 GHz] for the 5-cell
cavity with 6 H-shaped waveguide ports computed by the proposed solver
on 32 Cori Haswell nodes. Each color represents one detected resonance with
trial frequencies (the dots) suggested by the proposed solver. The detected
resonance frequency for each mode is the frequency where the eigenvalue
attains the minimum. Note that most HOMs exhibit larger eigenvalues and
higher bandwidth as power is efficiently damped by the ports.

the cavity from the surface current densities, and integrating
IERD into the automatic cavity design process.
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