
Harnessing the Crowd for Autotuning
High-Performance Computing Applications

Younghyun Cho, James W. Demmel
University of California, Berkeley
{younghyun,demmel}@berkeley.edu

Jacob King
Tech-X

jking@txcorp.com

Xiaoye S. Li, Yang Liu, Hengrui Luo
Lawrence Berkeley National Laboratory

{xsli,liuyangzhuan,hrluo}@lbl.gov

Abstract—This paper presents GPTuneCrowd, a crowd-based
autotuning framework for tuning high-performance computing
applications. GPTuneCrowd collects performance data from var-
ious users using a user-friendly tuner interface. GPTuneCrowd
then presents novel autotuning techniques, based on transfer
learning and parameter sensitivity analysis, to maximize tuning
quality using collected data from the crowd. This paper shows
several real-world case studies of GPTuneCrowd. Our evalua-
tion shows that GPTuneCrowd’s transfer learning improves the
tuned performance of ScaLAPACK’s PDGEQRF by 1.57x and
a plasma fusion code NIMROD by 2.97x, over a non-transfer
learning autotuner. We use GPTuneCrowd’s sensitivity analysis
to reduce the search space of SuperLU DIST and Hypre. Tuning
on the reduced search space achieves 1.17x and 1.35x better
tuned performance of SuperLU DIST and Hypre, respectively,
compared to the original search space.

Index Terms—autotuning, crowd-based autotuning, transfer
learning, sensitivity analysis, Exascale Computing Project

I. INTRODUCTION

High-Performance Computing (HPC) codes [1]–[4] usually
have multiple tuning parameters that need to be optimized for
a given system. Autotuning has therefore gaining importance
to tune HPC codes with minimal human efforts. Bayesian
optimization (BO), that attempts to find an optimal parameter
configuration within a limited number of trials, is an attractive
approach to tuning HPC applications that are expensive to
evaluate and hard to model. Many recent autotuners [5]–[8]
started to employ BO. The approach runs and evaluates the
code with carefully chosen tuning parameter configurations,
and (iteratively) builds a performance model (i.e., a surrogate
model) based on the measured performance (i.e., function
evaluations) and uses the performance model to search the
optimal tuning parameter configuration.

Although BO promises to find a good parameter configura-
tion for a given tuning budget, autotuning is still expensive,
which hinders wide adoption of autotuning in many HPC
domains. For instance, a survey [9] has shown that the majority
of climate model experts is skeptical of adopting autotuning
for tuning climate models. There are several fundamental
challenges. First, optimal tuning parameters will vary from
platform to platform. Each individual user therefore needs
to perform autotuning from scratch. Second, BO requires
evaluations for sufficient parameter configurations in order to
have an accurate surrogate model, especially when the given
search space is large. Running and measuring an HPC code
on a large-scale machine can be extremely expensive.

In this paper, we present a crowd-based autotuning (crowd-
tuning) approach that leverages the power of the crowd to
overcome these autotuning challenges. We see that for popular
applications there are multiple users who need to tune the same
application (across different software/machine settings), and
there will be performance data samples that can be collected
over time. We aim to leverage performance data samples ac-
cumuluated from various users using Transfer Learning-based
Autotuning (TLA). In our context, TLA means that we tune
a given problem (target task) with pre-collected datasets from
different problems (source tasks). TLA allows us to exploit
existing performance data from various hardware and software
platforms (from the crowd) to tune HPC codes (for the current
tuner user) using a minimal tuning budget. Furthermore, we
provide data analytics using collected data such as parameter
sensitivity analysis. Such parameter sensitivity information can
be used to reduce the tuning search space of a tuning problem.

Interfacing the tuner with the collected data is key to crowd-
tuning. Although there are several performance repositories
for sharing performance data among different users [10],
[11], these existing works lack a user-friendly programming
interface for autotuning, which makes it increasingly difficult
to submit or retrieve relevant data, as the size of the database
grows. For TLA, several autotuners such as GPTune [8], [11],
HiPerBOt [6], and Vizier [12] use a TLA algorithm in their BO
framework. However, we observe that there is no one-size-fits-
all TLA algorithm given the various characteristics of tuning
problems, due to their stochastic nature. In addition, to our
best knowledge, none of the aforementioned tuners provides
parameter sensitivity analysis. Our work focuses on the three
aspects of crowd-tuning: (1) enhancing programmability of the
shared database, (2) maximizing the benefit of transfer learning
for a variety of tuning problems, and (3) enabling a sensitivity
analysis tool to provide insights into a tuning problem.

To this end, we present GPTuneCrowd, a crowd-based
autotuning framework for tuning HPC applications. Figure 1
illustrates the crowd-tuning workflow. GPTuneCrowd lever-
ages a shared database infrastructure to collect performance
data. The shared database uses database management systems
to securely manage performance and user data and provides
useful web-based tools that help users browse collected data.
GPTuneCrowd also provides a user-friendly tuner interface.
Users only need to provide a simple meta description about
the given tuning problem, then our tuner can query and upload

1

Shared DB

• User credentials
• Tuning search space
• Environment information

Perf. samples
from user A

Perf. samples
from user B

Perf. samples
from user C

Local DBEnrich the meta description with
automatic environment parsing

Crowd-tuning meta description

GPTuneCrowd user

GPTuneCrowd

Autotuning with
transfer learning

Sensitivity analysis
on tuning parameters

Update the local DB
from the shared DB

Update the local DB and
the shared DB with new
function evaluations

Fig. 1. Overview of GPTuneCrowd.

performance data using the shared database, along with several
automatic environment parsing techniques to record and/or
match the runtime environment information (e.g., software and
machine configuration). GPTuneCrowd also provides a num-
ber of utilities for data analytics such as parameter sensitivity
analysis and performance prediction.

GPTuneCrowd uses transfer learning to maximize tuning
quality (i.e., minimizing the number of samples needed to at-
tain (nearly) optimal performance). GPTuneCrowd has a pool
of TLA algorithms which includes three existing algorithms,
a multitask learning-based approach from GPTune [11], a
weighted sum-based approach from HiPerBOt [6], and a model
stacking approach from Vizier [12]. In addition, we provide
two improved algorithms for the multitask learning-based
weighted sum-based approaches that outperform the original
methods in [11] and [6]. Furthermore, GPTuneCrowd provides
a novel ensemble technique that can benefit from multiple
TLA algorithms. Our ensemble approach dynamically selects
a TLA algorithm from the algorithm pool during autotuning
based on a probability distribution function. The approach
can fully automatically choose the best result from different
algorithms.

We present a number of real-world use cases of GP-
TuneCrowd. We first provide a thorough comparison of a
variety of TLA algorithms using two synthetic functions. Then,
we apply GPTuneCrowd’s transfer learning to tune large-scale
real-world applications, ScaLAPACK’s PDGEQRF [1] and a
fusion simulation code NIMROD [4]. These experiments show
that how performance data collected from different tasks to
tune the code for another task, or how data from different
machine configuration can be used to tune on another machine
configuration. For example, on NERSC’s Cori supercomputer,
with 100 pre-collected performance samples for a source task,
GPTuneCrowd improves the tuned performance (runtime) of
PDGEQRF (with 10 function evaluations) up to 1.57x (36.2%)
compared to non-TLA autotuning. With 500 pre-collected
performance data samples collected from 32 Haswell nodes,
GPTuneCrowd improves the tuned performance of NIMROD
(with 10 function evaluations) up to 2.97x (66.4%) on 64
Haswell nodes over non-TLA autotuning. In addition, we use
GPTuneCrowd’s sensitivity analysis to reduce the tuning space
of SuperLU DIST [2] and Hypre [3]. The reduced-size tuning
attains 1.17x and 1.35x better results for SuperLU DIST and
Hypre, respectively, compared to tuning on the original tuning
search space, based 10 function evaluations.

This paper makes the following contributions:
• We provide a user-friendly crowd-based autotuning

framework that requires only a simple meta description
for tuning with collected performance data (Section IV).

• We improve existing transfer learning methods and pro-
vide an ensemble technique to maximize tuning quality
using a pool of transfer learning algorithms (Section V).

• We provide an evaluation of existing transfer learning
algorithms along with our new algorithms (Section VI).

• We demonstrate the effectiveness of GPTuneCrowd using
real-world HPC applications on large-scale machines
(Section VI).

GPTuneCrowd is built on top of an open-source autotuner
GPTune [8] and incorporated into the GPTune package that
also contains several other useful autotuning techniques [8],
[13]–[15]. The GPTune package is available at https://github.
com/gptune/GPTune. Our user guide [16] provides more de-
tailed user interfaces and installation options of the GPTune
package (including GPTuneCrowd) for various user systems.
Our shared database is located at https://gptune.lbl.gov.

II. RELATED WORK

A. Autotuners for HPC

Recent research in HPC autotuners develops growing in-
terest in Bayesian optimization (BO) to tune expensive-to-
evaluate HPC codes. HiPerBOt [6] and GPTune [8] use Gaus-
sian Process (GP) regression to build a surrogate performance
model. GPTune proposes multitask learning-based autotuning
using a Linear Coregionalization Model (LCM), where tun-
ing multiple correlated tuning problems simultaneously can
benefit from each other. Zhu et al. present GPTuneBand [13]
that combines multitask learning with a multi-armed bandit
strategy. BLISS [7] uses an ensemble of multiple surrogate
models. Ytopt [5] supports multiple machine learning tech-
niques within BO. GPTuneCrowd, on the other hand, focuses
on maximizing tuning efficiency using collected data from
various users using transfer learning.

B. Crowd-based autotuning

There are several existing works for sharing performance
data among different users. CK [10] is an interface and
tool for reproducible workflow automation, and provides a
repository that permits uploading users’ performance results
and downloading results from other users. GPTune’s history
database (in 2021) [11] also provides a repository for sharing
performance data samples obtained from autotuning.

GPTuneCrowd improves these existing databases as follows.
First, we provide a programmable interface that enables users
to write an SQL-like query to retrieve relevant performance
data. Second, we improve the performance data collection
scheme. GPTuneCrowd can automatically download and up-
load performance data for a given problem (if the user agrees
on), without needing to access the web repository manually,
and automatically record the HPC runtime environment in-
formation to assure the reproducibility. Third, our database
provides useful data analysis tool to exploit the collected data

2

Performance sample format

• Tuning problem name/category
• Task parameter
• Tuning parameter
• Evaluation result
• Additional output information
 (e.g. constants, perf. profiles, etc.)
• Machine configuration
• Software configuration
• User information
• Unique ID
• Timestamp

SuperLU_DIST

NIMROD

DB for performance data

PDGEQRF

Perf.
samples

Perf.
samples

Perf.
samples

...

DB for matching tuning environment

Tuning
problem DB

Machine DB Software DB

Filter data using tag names

Maintain information for popular tuning
problems, machines, software packages.

DB for user management

User DB

Check accessibility

Fig. 2. Shared database structure.

such as performance prediction and sensitivity analysis. Lastly,
beyond the existing works, GPTuneCrowd offers advanced
TLA techniques, and this paper provides a thorough compar-
ison of various TLA algorithms.

Outside the computer science community, the Materials
project [17] provides a repository to share materials infor-
mation computed using supercomputing resources. They pro-
vide a programmable interface called Materials API (MAPI)
to query materials information, and their work inspired the
development of our crowd-tuning interface.

C. Transfer learning

To the best of our knowledge, among the various HPC
autotuners, GPTune [11] and HiPerBOt [6] offer a transfer
learning approach. GPTune’s transfer learning [11] relies on a
multitask learning technique using LCM [8] that models the
correlation of multiple different tasks. HiPerBOt [6] uses a
weighted sum of the surrogate models of both source and
target tasks to combine the knowledge of the source and
target tasks. In their method, weight values are statically
determined for both source and target tasks, and their paper
does not discuss how to compute weight values for various
tuning problems. Google’s Vizier [12] is an autotuner for
their internal services. Vizier uses a stacking approach which
models the residuals among the source and target tasks. The
stacking method then accumulates the modeled residuals and
use the stacked model for parameter search. GPTuneCrowd
not only offers all these methods but also improves the multi-
task learning-based and weighted sum-based approaches and
provides a new ensemble technique to combine the benefits
from different TLA algorithms (Section V).

III. CROWDTUNE INFRASTRUCTURE

Figure 2 illustrates the structure of the shared database.
The shared database manages collected performance samples
in a JSON (JavaScript Object Notation) form using Mon-
goDB [18]. The JSON data format is human readable, and
the data can thus be used for various autotuning frameworks.
All performance data sample contains task parameters, tuning
parameters, and its output (evaluation result). Task parameters
(i.e., tasks) describe the application may encounter (e.g., the

sizes of matrices, pointers to input files). Tuning parameters
are the tuning parameter configuration of the performance
data sample (e.g., size of row/column blocks). Output is the
evaluation result (e.g., measured runtime) of the task and
tuning parameter configuration.

For reproducibility, the database can also record the runtime
environment information of each performance sample. The in-
formation includes the machine and software configuration on
which the code is evaluated. To obtain such information, users
can describe the given machine and software configuration,
however, human-provided information requires lots of human
efforts and is prone to error. To address this challenge, GP-
TuneCrowd supports several automatic environment parsing
techniques to parse and record the reproducibility information
without manual input. Since the runtime environment can be
given manually, different users might use different names to
describe the same machine and software configuration. The
shared database therefore internally parses the user provided
information to match the tag names with the well-defined
machine software information existing in the database. As
shown in Figure 2, we maintain separate databases for the
detailed information of popular software frameworks and user
systems with possible tag names for this purpose.

For reliability, the repository allows only registered users to
upload and record user information (e.g., username and email),
but we also provide some options for users who do not wish
to disclose their information to other users. Each performance
data sample can have a different level of accessibility, e.g., the
data can be publicly available, private, or shared with specific
users or groups. To assure the security of the database, we use
a number of techniques such as robot checking, user password
protection, and regular vulnerability checking.

IV. PROGRAMMING GPTUNECROWD

A. Meta description and automatic environment parsing

To leverage collected data in the shared database, GP-
TuneCrowd requires users to provide only a meta description
about the given tuning problem. The necessary information
includes the user’s login credentials (API key), the tuning
problem name, the tuning parameter search space, and the
runtime environment information. The following code snippet
shows an example of meta description.
{
api_key = "your_api_key",
tuning_problem_name = "my_example",
problem_space = {
"input_space": [
{"name":"t", "type":"integer",
"lower_bound":1, "upper_bound":10}

],
"parameter_space": [
{"name":"x", "type":"real",
"lower_bound":0, "upper_bound":10},

],
"output_space": [
{"name":"y", "type":"real"}

]
},
configuration_space = {
"machine_configurations": [
{"Cori":{"haswell":{"nodes":1,"cores":32}}}

],
"software_configurations": [
{"gcc":{"version_from":[8,0,0],

"version_to":[9,0,0]}
],
"user_configurations": ["user_A", "user_B"]

},

3

machine_configuration = {
"machine_name": "Cori",
"slurm": "yes"

},
software_configuration = {

"spack": "ScaLAPACK"
},
sync_crowd_repo = "yes"

}

To use GPTuneCrowd, the user needs to have an API
(Application Programming Interface) key and provide it in the
meta description. Individual users can generate one or more
API keys at our database website. Users have to manage their
API keys securely, because API keys are user login credentials.
By default, an API key is simply a random string of 20
characters/digits. To enhance the security of API keys, users
can also use public and private key pairs for API keys. In this
case, the user needs to keep the private key and we record
only the public key in our user database.

The tuning problem name is used to distinguish be-
tween different tuning problems. The meta description has
two types of database query parameters, problem space

and configuration space. The problem space parame-
ter is used to describe the parameter range that the user
wants to query from the shared database. For example, the
input space can refer to what kind of task information
(e.g., the problem size) to be queried and parameter space

describes what tuning parameter types to be queried. The
lower/upper bound parameters define the range of task
parameter values to be queried. In case the parameter is cate-
gorical type, the user can provide the list using categories

field. The configuration space parameter, on the other
hand, describes the list of environment information, i.e., the
machine, software, and the user information that the user wants
to allow to download. The example means that the user wants
to query performance data samples obtained from Cori system
using one Haswell node, and the user gives a restriction to
query data obtained from a GCC compiler with a version
between 8.0.0 and 9.0.0. Lastly, users may want to trust data
submitted by specific users. The user can provide the list of
usernames (or email addresses) in the user configuration

field. Users may look up available user entries from the shared
database website. If these condition information is not given,
a query will download all data available to the user.

The machine/software configuration parameter is
used to record the runtime environment of the user. The infor-
mation will be appended to each function evaluation and up-
loaded to the shared database (if sync crowd repo=“yes”).
Since GPTuneCrowd is designed for tuning HPC applications,
we support several automatic environment parsing for popular
HPC environments. In case the HPC code is installed with an
automatic installation tool such as Spack [19] or CK [10], the
user can inform the database about which software is installed
with Spack or CK, so that our database can automatically parse
the software configuration and record it in the database. In
addition, if the workload is executed via the Slurm workload
manager, our database can also record the node allocation and
the machine information automatically.

Crowd-tuning API is obviously easier-to-use than working

with a web interface, especially when writing a tuning script.

B. Utility functions and data analytics

GPTuneCrowd provides a set of utility functions in
Python to exploit the queried data for data analysis. The
functions include QueryFunctionEvaluations, QuerySurro-
gateModel, QueryPredictOutput, and QuerySensitivityAnaly-
sis. For example, the user can simply call these functions using
an API key and the problem description to query from the
GPTuneCrowd’s shared database.
import crowdtune
ret = crowdtune.QueryFunctionEvaluations(

api_key = api_key,
tuning_problem_name = "Example",
problem_space = problem_space,
configuration_space = configuration_space)

QueryFunctionEvaluations returns a list of queried function
evaluation results. QuerySurrogateModel allows the user to
get a surrogate performance model based on the queried
performance data samples. Here, the user can choose a spe-
cific surrogate modeling technique among several modeling
options. The queried surrogate model is a black-box function;
once the input parameter set is given the function will return
a predicted output value. QueryPredictOutput is similar to
QuerySurrogateModel, but instead of returning a surrogate
model, it returns the predicted output for the given parameter
configuration.

QuerySensitivityAnalysis is one of the unique features of
GPTuneCrowd among other existing tuners. It queries the
relevant performance data samples and build a surrogate per-
formance model and conduct a parameter sensitivity analysis
using the model. This function provides options to specify
the surrogate modeling method and the sensitivity analysis
methods. GPTuneCrowd currently offers an interface for a
sensitivity analysis tool based on using the Sobol analysis [20]
for the learned surrogate model and using the implementation
of SALib [21]. The Sobol method is a global sensitivity
analysis providing an assessment of parameter sensitivity. The
Sobol analysis requires (1) samples drawn from the trained
surrogate model directly, (2) evaluating the model using the
generated sample inputs and (3) conducting a variance-based
mathematical analysis to compute the sensitivity indices. The
Sobol analysis evaluates the part of the total variance of the
response that can be attributed to the input parameter Xn.
In the Sobol method, we usually consider two measures:
A first-order (main-effect) index S1i is the contribution to
the output variance of the main (linear) effect of an input
attribute Xi, therefore it measures the effect of varying Xi

alone, but averaged over variations in other input parameters.
It is standardised by the total variance to provide a fractional
contribution. A total effect index STi represents the total
contribution (including interactions among parameters) of a
parameter Xi to the response variance; it is obtained by
summing all first-order and higher-order effects involving the
parameter Xi.

V. TRANSFER LEARNING ALGORITHMS

GPTuneCrowd contains a pool of multiple TLA algorithms
and provides an ensemble approach that benefits from multiple

4

TLA algorithms. Table I summarizes the TLA algorithm pool
of GPTuneCrowd. The table contains three existing techniques,
Multitask(PS) from [11], WeightedSum(static/equal)
from [6], and Stacking from [12], and two improved
version of multitask and weighted sum-based approaches,
Multitask(TS) and WeightedSum(dynamic), and finally our
ensemble technique Ensemble(proposed). In what follows,
we provide the details of these algorithms.

A. Multitask learning

This approach treats transfer learning as multitask learning
to tune the new task with the available data from the source
tasks. The method exploits pre-collected function evalua-
tion data and/or pre-trained surrogate performance models
of source tasks and run the LCM-based multitask surrogate
modeling for both source and target tasks.

1) Using black-box surrogate models of source tasks
(pseudo samples): In 2021, GPTune [11] proposed to exploit
pre-trained surrogate performance models of source tasks and
run multitask learning for both source and target tasks. The
multitask modeling uses the Linear Coregionalization Model
(LCM) [8] in order to model the correlation of the source and
target tasks. The LCM model is used to predict the next sample
for all the source and target tasks. As transfer learning is not
intended to evaluate new samples for the source tasks, the
approach uses mean values predicted by the source surrogate
model as a black-box function to generate pseudo samples
for the source task. It only runs and evaluates the target task
for the new sample. The new samples, true samples from the
target task and pseudo samples from the source tasks, are used
to iteratively build an LCM model. We dub this TLA scheme
as Multitask(PS), where PS represents pseudo samples from
the black-box surrogate models.

2) Using true performance samples of source tasks: Using
black-box surrogate models for source tasks does not fully
exploit the collected knowledge (all the performance samples)
of source tasks. Thanks to the shared database support that
allows us to access the collected datasets, here we focus on
utilizing all the collected true samples of the source tasks,
by supporting unequal number of samples per task within the
LCM modeling. It starts with building an LCM model with
the pre-trained surrogate models for the source tasks and zero
sample for the target task. The proposed scheme starts with
building a LCM model with many samples for the source
task and zero sample for the target task. The LCM model
will predict the next sample only for the target task. The
new sample is then evaluated and the LCM model is updated
with one more sample from the target task. This approach is
labeled as Multitask(TS) in Table I, where TS represents true
samples for the source tasks. Our evaluations in Section VI-A
show the benefit of Multitask(TS) over Multitask(PS).

B. Weighted sum using static weights

This approach builds a GP surrogate model for each of
the source and target tasks. Then, the approach combines the
surrogate models to explore the parameter space for the target

task, by using the arithmetic sum of the surrogate models for
the mean function and the geometric mean of the surrogate
models for the standard deviation function. For the combined
GP model f(x) ∼ GP (µ(x), σ(x)), the mean function and
standard deviation function are computed as follows:

µ(x) = wtarget · µtarget(x) +

nsrc∑
i=1

wsrci · µsrci(x) (1)

σ(x) = (σtarget(x)
wtarget ·Πnsrc

i=1 (σsrci(x)
wsrci)) (2)

where wsrc and wtarget are the weights for source and target
tasks, respectively. µsrc and σsrc is the mean and standard
deviation function of the source task’s surrogate model, and
there are nsrc source tasks. µtarget and σtarget are the mean
and standard deviation functions of the target task. nsrc

represents the number of source tasks.
We label this approach as WeightSum(static). This ap-

proach is used in HiPerBOt [6], however, the paper does
not discuss how to compute the weight values for various
problems. Therefore, if weights are not specified by the user
(most cases), we simply use an equal weight 1 for all source
and target tasks, which is labeled as WeightSum(equal).

C. Weighted sum using dynamic weight computation

The weighted sum-based approach using static weights may
work ideally only if the proper weights are given by the
user. However, proper weight values are usually unknown.
To address this challenge, GPTuneCrowd provides a dynamic
approach to computing weights for the source and target tasks.
To determine the weights, for an individual GP surrogate
model (both source and target tasks), for each of the observed
samples for the target task we compute the difference between
the predicted output of the sample’s parameter configuration
and the predicted output for the best parameter configuration
observed so far. Then, we compare the differences from the
prediction to the differences from the actual observations
(for the current target task). Considering the linear regression
problem with coefficients wsrc1 , . . . , wsrcnsrc

, wtarget and dif-
ferent GP surrogates G1, . . . , Gnsrc

, Gtarget and observed
sequential samples (x1, y1), . . . , (xN , yN).

y∗ − yj =

nsrc∑
i=1

wsrci · [µsrci(x
∗)− µsrci(xj)]+

wtarget · [µtarget(x
∗)− µtarget(xj)], j = 1, . . . , ns

where y∗ = f(x∗) is the current minimum black-box func-
tion value, and µi(·) is the predicted mean of the GP surrogate
model i. Since we are assuming a minimization problem, the
left-hand side (LHS) is always non-positive. The larger the
LHS, the closer this observation is from the current (observed)
minima. Therefore, if we have a good combination of weights
w1, . . . , wd, the linear regression should have a good fit. Then,
we compute the weight values for individual surrogate models
at each iteration of the tuning for both the target and the
source tasks, and apply the weight values in the weighted
sum equation (Equation 1) in the search phase. Note that, the
LHS and RHS of the linear regression problem of the above

5

TABLE I
THE TLA ALGORITHM POOL IN GPTUNECROWD.

Naming Description First autotuner (to our best knowledge)

Multitask (PS) LCM-based multitask learning using pseudo samples from black-box surrogate models
of the source tasks. [11]

Multitask (TS) LCM-based multitask learning using true samples of the source tasks. GPTuneCrowd
WeightedSum
(static/equal)

Weighted sum of surrogate models of source and target tasks using static weight values
(if specified) or equal weights (if not specified). [6]

WeightedSum
(dynamic)

Weighted sum of surrogate models of source and target tasks using dynamically chosen
weight values using a linear regression approach. GPTuneCrowd

Stacking Modeling the residuals between the surrogate models using the posterior mean of the
source tasks and aggregating them. [12]

Ensemble (proposed) Dynamically choose a TLA algorithm for each function evaluation of the target task
using Algorithm 1. GPTuneCrowd

equation is further normalized to y∗ and Gi(x
∗), because

source and the target tasks can have different output scales.

D. Stacking surrogate models

Google’s Vizier [12] proposes a transfer learning approach
that uses the posterior mean of the source tasks to combine
with the surrogate model of the target task. The method starts
with building a surrogate model of an initial source task. Then,
for the second source task, it trains another GP model for
the residual between the second source task and the initial
surrogate model, and combine the initial GP model with the
residual model. It then repeatedly adds residual models for
the remaining source tasks and finally the target task. The
combined posterior mean is then computed as follows:

µ(x) = µ′
target(x) +

nsrc∑
i=1

µ′
srci(x)

where µ′
i (when 2 ≤ i ≤ nsrc) is the GP mean function for

the residuals between the observed samples for the source task
i and the predicted mean of µ′

i−1. µ′
1 is the mean function of

the surrogate model for the first source task, and µ′
target is the

GP mean function for the residuals between the target task’s
observed samples and the predicted mean of µ′

nsrc
.

The standard deviation function computation is also com-
puted iteratively using a weighed geometric mean, based on
the number of samples, as follows:

σ(x) = (σ′
target(x))

β · (σ′
srcnsrc

(x))1−β

where β =
n samplestarget

(n samplestarget+n samplessrcnsrc
) . The computa-

tion for σ′
srci(x) (1 ≤ i ≤ nsrc) is analogous; it computes the

weighted geometric mean between source task i and i− 1.
GPTuneCrowd’s TLA pool also contains Vizier’s algorithm.

One would expect that the sequence (ordering) of the source
surrogate models can affect the quality of the combined model.
We order the source tasks based on the number of available
samples (the first task has the largest number of samples).

E. Ensemble of transfer learning algorithms

Finally, GPTuneCrowd provides an ensemble technique to
combine the benefits from different TLA algorithms and attain
a nearly optimal solution for a variety of tuning problems. This
approach is labeled as Ensemble(proposed).

Algorithm 1 Proposed ensemble approach to TLA.
1: T = list of TLA approaches (by default, T={Multitask

(TS), WeightedSum (dynamic), Stacking})
2: NS = the tuning budget (number of samples to collect)
3: nsamples = number of obtained samples for the target task

(set 0 unless there are existing samples for the target task)
4: while nsamples ≤ NS do
5: r = Choose a value [0,1) uniformly at random
6: if r < ExplorationRate from Equation 4 then
7: TLA alg. = Choose one from T uniformly at random
8: else
9: TLA alg. = Choose one from T based on the prob-

ability distribution function from Equation 3.
10: end if
11: Build a TLA model using the chosen TLA algorithm.
12: Search x the next parameter configuration to evaluate.
13: Compute y(x) at the new parameter configuration x and

update the database.
14: nsamples = nsamples + 1.
15: end while
16: Return xopt and yopt

Algorithm 1 shows the procedure of the proposed technique,
labeled as Ensemble(proposed). First, we define the set of
TLA algorithms; by default, we use a set of Multitask(TS),
WeightedSum(dynamic) and Stacking. Note that the tuner
uses an iterative approach, where the tuner suggests a promis-
ing parameter configuration and evaluates the suggested pa-
rameter configuration to re-build a surrogate model. Our idea
is to build a Probability Distribution Function (PDF) after each
function evaluation based on the best parameter configurations
found by each TLA algorithm. The probability of each TLA
algorithm is computed as follows:

prob(t) =
1/best output(t)∑

titer∈T (1/best output(titer))
(3)

where we assign a higher probability for TLA algorithms that
suggested better parameter configurations, assuming we are
minimizing the objective and the objective is a non-negative
value (e.g., runtime or memory-consumption optimization).
However, using only a probability distribution function is not
sufficient because only the chosen TLA algorithm has a chance

6

1 10 20 30
0.7

0.8

0.9

1.0

(a) Demo function
 Target: t=1.0
 Source: t=0.8

1 10 20 30
0.7

0.8

0.9

1.0

(b) Demo function
 Target: t=1.2
 Source: t=0.8

1 10 20 30

0.5

1.0

1.5

2.0

(c) Branin function
 Target: T1
 Source: S1

1 10 20 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) Branin function
 Target: T2
 Source: S1

1 10 20 30

0.5

1.0

1.5

2.0

(e) Branin function
 Target: T1

 Sources: S1, S2, S3

1 10 20 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

(f) Branin function
 Target: T2

 Sources: S1, S2, S3

No TLA WieghtedSum (equal) WeightedSum (dynamic) Multitask (PS) Multitask (TS) Stacking Ensemble (toggling) Ensemble (prob) Ensemble (proposed)

Number of function evaluations

Tu
ne

d
re

su
lt

(y
)

Comparison of transfer learning methodologies

Fig. 3. Tuned results depending on the number of function evaluations. It compares different TLA algorithms using the demo and Branin synthetic functions.
For TLA, (a)–(d) use one source task, and (e)–(f) use three source tasks. For each source task, we collected 200 samples for randomly chosen parameter
configurations. For the demo function (a)–(b) that contains one task parameter, we specify the source (t=0.8) and target tasks (t=1.0 in (a) t=1.2 in (b)). For
the Branin function (c)–(d) that contains six task parameters, we randomly choose the source and target tasks (shown by S1–S3 and T1–T2). We run each
tuning experiment five times (with different random seeds). The line charts show the average of the tuned performance of the five runs and shaded areas
represent their standard deviation.

to be further updated. Therefore, we also use an exploration
rate that allows us to choose a TLA algorithm uniformly
at runtime (lines 6–7). The exploration rate is computed
dynamically using a function given by:

ExplorationRate =
(|T | · nparameters/nsamples)

(1 + |T | · nparameters/nsamples)
(4)

where it considers the number of TLA algorithms (|T |) (the
higher number, the higher exploration rate), the number of tun-
ing parameters (nparameters) (the higher number, the higher
exploration rate), and the number of obtained samples for the
current target task (nsamples) (the higher number, the lower
exploration rate).

There can be more naive ensemble approaches such as (1) a
toggling approach that chooses a TLA algorithm sequentially
(Ensemble(toggling)) and (2) using only a probability dis-
tribution function without an exploration rate (i.e., exploration
rate is always 0) (Ensemble(prob)). We show the benefit
of our proposed scheme over these two simpler schemes in
Section VI-A.

VI. EVALUATION

This section demonstrates the effectiveness of GP-
TuneCrowd using two synthetic functions and three real-
world large-scale applications, NIMROD [4], ScaLAPACK’s
PDGEQRF [1], SuperLU DIST [2] and Hypre [3].

A. Comparison of transfer learning algorithms

We first compare the TLA algorithms discussed in Sec-
tion V, as well as a non-TLA tuner (labeled as NoTLA)
using two synthetic objective functions. NoTLA tunes a given
target task using Bayesian optimization from GPTune tuning
package, where it builds a GP surrogate model after every
function evaluation for parameter search. We use two synthetic
functions used in previous literature [8], [22]: (1) an explicit
demo objective function and (2) Branin function (https://www.
sfu.ca/∼ssurjano/branin.html). The demo function is given by
y(t, x) = 1 + e(−(x+1)t+1) cos(2πx)

∑3
i=1 sin

(
2πx(t + 2)i

)
,

where it consists of one task parameter t [0, 10) and one
tuning parameter x [0, 1.0). The Branin function is given
by y(a, b, c, r, s, x1, x2) = a(x2 − bx2

1 + cx1 − r)2 +
s(1 − t)cos(x1) + s, where there are six task parameters
(a, b, c, r, s, t) and two tuning parameters (x1 and x2).

Figure 3 compares different tuning algorithms, based on
the best-so-far results depending on the number of samples,
for two scenarios of the demo function and four scenarios of
the Branin function. Note that, for the first function evaluation
(number of evaluations=1) we used WeightedSum(eqaul) as
there is no information about target task for dynamic weight
computation or LCM. The experiments draw the following
conclusions.

(1) The TLA algorithms outperform the non-TLA tuner
by a significant margin. For the most scenarios in Figure 3,
NoTLA shows the worst or nearly worst tuning quality com-
pared to TLA algorithms. There are few cases where certain
TLA algorithms perform worse than NoTLA. For example,
WeightedSum(equal) becomes worse than NoTLA when the
number of function evaluations is sufficiently large (e.g.,
Figure 3 (a)). It implies that the weighted sum-based approach
needs an intelligent method to compute the proper weights.
When the number of function evaluations is relatively small,
NoTLA performs much worse than TLA algorithms.

(2) Our improved TLA algorithms outperform
the existing algorithms significantly. As explained in
Section V, GPTuneCrowd provides Multitask(TS) and
WeightedSum(dynamic) to refine the existing algorithms
Multitask(PS) and WeightedSum(equal). Comparing
Multitask(TS) and Multitask(PS), we observe that
Multitask(TS) improves the overall tuning quality,
especially for the Branin function (see (c)–(f)). Comparing
WeightedSum(dynamic) and WeightedSum(equal),
improvements from our dynamic method are clear for
all the scenarios except (b). The results show that our
dynamic approach provides a good solution to compute
weight values for source and target tasks.

7

TABLE II
PDGEQRF TUNING PARAMETERS

Parameter Description Type Range
mb row block size = 8 ·mb Integer [1,16)
nb column block size = 8 · nb Integer [1,16)

lg2npernode number of MPI processes per
node = 2lg2npernode Integer [0, logcores2)

p number of row processes Integer [1, nodes·cores)

(3) The best TLA algorithm varies for different tuning
problems. The results support our claim “there is no one-size-
fits-all TLA algorithm”. Comparing among Multitask(TS),
WeightedSum(dynamic) and Stacking, the results show that
the best algorithm changes depending on the tuning scenario
and the given tuning budget. For example, looking at the tuned
result with 10th function evaluations, Stacking is the best for
(a), (d) and (e), and Multitask(TS) is the best for (c). For
20th evaluation, WeightedSum(dynamic) is the best for (a)
while Multitask(TS) is the best for (b). Note that a specific
TLA algorithm can often perform poorly in certain cases. For
example, in case of Multitask(TS), it provides a good tuning
quality for (a), (b), and (e), but it performs poorly for (f). Our
experiments using real-world applications (Section VI-C and
VI-C) also show that the best TLA algorithm varies depending
on the problem. It is not feasible for a user to choose the best
TLA algorithm for various tuning problems.

(4) The proposed ensemble technique consistently pro-
vides near optimal tuning quality. We observe that the
proposed ensemble technique (Algorithm 1) can consistently
achieve nearly optimal tuning quality. For example, based on
20 function evaluations, among all the 9 tuners in Figure 3,
Ensemble(proposed) achieves the best tuning for (a) and
nearly best tuning for (c), (d), (e), and (f). For (b) (worst
case of Ensemble(proposed)), where Multitask(TS) is the
best (based on 20th results), the ensemble technique is still
effective and provides improvements over NoTLA, while out-
performing weighted-sum and stacking approaches. The figure
also shows that the proposed ensemble technique outperforms
two simpler ensemble approaches Ensemble(toggling) and
Ensemble(prob) (see (a), (d), (e), and (f)).

B. Case study of transfer learning: ScaLAPACK’s PDGEQRF

As a real-world example, ScaLAPACK’s PDGEQRF [1]
is a distributed memory-parallel QR factorization routine. It
contains two task parameters that describe the size of the given
matrix rows (m) and columns (n), and four tuning parameters
mb, nb, lg2npernode, and p (see Table II for the details).
We used NERSC’s Cori supercomputer. The experiments are
performed using eight Cori Haswell compute nodes (total 256
cores), where each node has two 16-core Intel Xeon E5-
2698v3 processors and 128GB of 2133MHz DDR4 memory.

Figure 4 shows an evaluation of our TLA algorithms
and the non-TLA tuning (NoTLA) for two transfer learning
scenarios. Figure 4 (a) uses one source task and (b) uses
three source tasks. For the source datasets, we collected 100
samples for each source task for randomly chosen parameter
configurations. In a typical tuning setting, the user can start
with a collection of randomly chosen parameters to sufficiently

5 10 15 20
2

3

4

5

6

7

8

B
es

t t
un

in
g

re
su

lt
(s

ec
on

ds
)

(a) source task: m=n=10000
 100 samples

No TLA
WeightedSum (dynamic)
Multitask (TS)
Stacking
Ensemble (proposed)

5 10 15 20
2

3

4

5

6

7

8

(b) source tasks: m=n=10000, 8000, 6000
 100 samples each

Number of function evaluations

Tuning ScaLAPACK's PDGEQRF (m=n=12000)

Fig. 4. Tuned performance of ScaLAPACK’s PDGEQRF on 8 Haswell nodes
in NERSC’s Cori (256 cores). (a) uses one source task (m=n=10000), and (b)
uses three source tasks (m=n=10000,8000,6000); each source task has 100
samples for randomly chosen parameter configurations. We run each tuning
option three times (with different random seeds). The line charts show the
average of the tuned performance of the three runs and shaded areas represent
their standard deviation.

cover the search space, before the Bayesian optimization step
starts [8]. Therefore, the source task can contain many random
samples. Also, it is a reasonable setup to evaluate multiple
TLA algorithms in a reproducible way. Note that as more
and more samples are collected for the source task(s), transfer
learning would generally perform better, regardless of how the
samples are drawn.

In the figure, as expected, compared to NoTLA the TLA
algorithms improves the tuned performance significantly, es-
pecially when the number of function evaluations is small.
Looking at 10th evaluation on the single-source scenario, for
example, on (a) Ensemble(proposed) achieves the best tuned
performance (3.65s). Compared to the performance (4.36s)
tuned by NoTLA, our ensemble-based TLA achieves 1.19x
speedup (16.3% improvement). On the three-sources scenario,
Ensemble(proposed) achieves 2.78s which has a speedup of
1.57x (36.2% improvement), compared to NoTLA (4.36s).

Among the TLA algorithms, we see that Stacking ap-
proach is not effective for this problem. We also observe
that Multitask(TS) exploits the three available datasets well,
leading to better tuned results for 1st–10th evaluations in (b)
compared to (a). The proposed ensemble technique consis-
tently provides a good tuning quality for both (a) and (b).

C. Case study of transfer learning: NIMROD

For a larger-scale experiment, we used an extended mag-
netohydrodynamics (MHD) code NIMROD [4]. NIMROD
is primarily used for calculating the equilibrium, stability,
and dynamics of fusion plasmas, and is a critical simulation
tool for designing reactor-scale tokamaks. NIMROD uses a
high-order finite-element discretization for the poloidal plane,
and a pseudo-spectral method for the toroidal direction. The
MHD equations are solved via time-marching where each
time step solves several nonsymmetric sparse linear systems
with block Jacobi preconditioned GMRES [4]. Each Jacobi
block is factorized with the 3D algorithm of SuperLU DIST
[23]. In our experiment, we fix the geometry model and
the number of time steps. NIMROD production simulations

8

TABLE III
NIMROD TUNING PARAMETERS

Parameter Description Type Range

NSUP Maximum supernode sizes in Su-
perLU Integer [30,300)

NREL Upper bound of the minimum su-
pernode sizes in SuperLU Integer [10,40)

nbx
2nbx represents blocking parame-
ter in x direction for assembling
NIMROD matrices

Integer [1,3)

nby
2nby represents blocking parame-
ter in y direction for assembling
NIMROD matrices

Integer [1,3)

npz
2npz represents number of pro-
cesses in z dimension of each Su-
perLU 3D process grid

Integer [0,5)

require DOE leadership machines and are computationally
expensive. Using an optimized tuning method is critical to
achieving best performance as problem specifications and
computational architectures change.

More specifically, we set the number of time steps to 30
and aim to minimize the runtime in the main time-marching
loop. We consider the following task parameters mx, my, and
lphi that determine the size of the problem, where 2mx and
2my represent the number of mesh DoF in x and y directions,
respectively. floor(2lphi/3)+ 1 represents number of Fourier
modes in the toroidal direction. The tuning parameters are
= [NSUP, NREL, nbx, nby, npz], and the descriptions are
detailed in Table III. NSUP, NREL and npz are tuning param-
eters related to running 3D sparse LU factorization algorithm
of SuperLU DIST, and nbx and nby are NIMROD’s blocking
parameters. For each task, we also fix the total number of
compute nodes. Note that depending on the task and tuning
parameters there can be idle MPI ranks. For the following
experiments, as a source task’s dataset, we use 500 samples
collected from 32 Haswell nodes in Cori, for {mx: 5, my:
7, lphi: 1}. As clarified in Section VI-B, we randomly chose
parameter configurations to collect initial 500 source samples.

(1) TLA across different node counts (Figure 5 (a)). In
the first scenario, we tune NIMROD on a different number of
compute nodes (i.e., 64 Haswell nodes) than the source task.
We compare our TLA features with the non-TLA approach
NoTLA. First, the TLA algorithms can provide much better
tuning results compared to NoTLA by learning knowledge
from different node resource allocations. Looking at the 10th
tuning results, for example, compared to NoTLA the tuned
performance can be improved by 16.6% (1.20x) and 13.8%
(1.16x) (reduction of the runtime), using Multitask(TS)
(performed the best) and Ensemble(proposed), respectively.

(2) TLA across completely different hardware archi-
tectures and different problem sizes (Figure 5 (b)). Then,
we consider a different hardware architecture with a different
number of nodes. We use 32-node Knights Landing (KNL)
nodes in NERSC’s Cori machine. Each KNL node includes
an Intel Xeon Phi processor 7250 with a memory size of
96GB (DDR4) and 16GB (MCDRAM). In Figure 5, we see
that transfer learning algorithms perform similarly with non-
TLA tuning, although the first few iterations from transfer

2 4 6 8 10 12 14 16 18 20
8

10

12

14

Tu
ne

d
pe

rf
or

m
an

ce

 (r
un

tim
e

(s
))

(a) {mx:5, my:7, lphi:1}, 64 Haswell nodes, 2048 MPIs
Default paramters
No TLA

WeightedSum (dynamic)
Multitask (TS)

Stacking
Ensemble (proposed)

2 4 6 8 10 12 14 16 18 20
10

15

20

Tu
ne

d
pe

rf
or

m
an

ce

 (r
un

tim
e

(s
))

(b) {mx:5, my:4, lphi:1}, 32 KNL nodes, 512 MPIs

2 4 6 8 10 12 14 16 18 20
30

50

70

90

110

130

Tu
ne

d
pe

rf
or

m
an

ce

 (r
un

tim
e

(s
))

(c) {mx:6, my:8, lphi:1}, 64 Haswell nodes, 2048 MPIs

Tuning on NIMROD using 3D SuperLU_DIST
 (database source for TLA: 500 samples on

 {mx:5, my:7, lphi:1}, 32 Haswell nodes, 2048 MPIs)

Fig. 5. Tuned performance of NIMROD. (a)–(c) use one source task data,
{mx:5, my:7, lphi:1}, 500 samples obtained from 32 Haswell nodes in
NERSC Cori (1024 cores) for randomly chosen parameter configurations.
For the target task, (a) uses 64 Haswell nodes (2048 cores) for {mx:5, my:7,
lphi:1}. (b) uses 32 KNL nodes (2176 cores) for {mx:5, my:4, lphi:1}. (c)
uses 64 Haswell nodes (2048 cores) for {mx:6, my:8, lphi:1}. We run each
tuning option three times (with different random seeds). The line charts show
the average of the tuned performance of the three runs and shaded areas
represent their standard deviation.

learning had worse performance than NoTLA. Looking at the
10th results, compared to non-TLA, Ensemble(proposed)
still has 1.1x (9.0%) better tuned performance. In usual sce-
narios, users may choose a similar hardware architecture and
problem size for the source task. However, the results show
that even on a completely different hardware architecture, our
transfer learning would eventually behave similar to NoTLA,
as our transfer learning algorithms can automatically learn
the correlation between source tasks (other machines) and the
target task (the user’s machine).

(3) TLA across different problem sizes and different
node counts (Figure 5 (c)). We also consider tuning on
a different problem size. In this experiment, for the target
tuning problem we increase the input task {mx:6, my:8,
lphi:1}. We also increased the number of Haswell nodes to
64, so that we can have more hardware resources to execute
the large problem size. Our experimental results in Figure 5
(c) show a dramatic performance improvement over NoTLA.
Moreover, Ensemble(proposed) performs the best among the
tested TLA algorithms. Looking at the 10th tuning results,
compared to NoTLA, Ensemble(proposed) (performed the
best) achieves 66.4% performance gain (2.97x speedup) and
Multitask(TS) (second best) achieves 64% improvement
(2.78x speedup). Note that, in Figure 5 (c), X-axis (number of

9

TABLE IV
SENSITIVITY ANALYSIS OF SUPERLU DIST (INPUT MATRIX: SI5H12)

Parameter Type Range S1 S1.conf ST ST.conf

COLPERM Categorical 5 choices 0.80 0.06 0.86 0.07
LOOKAHEAD Integer [5,20] 0.00 0.01 0.01 0.00

nprows Integer [1,11] 0.11 0.05 0.17 0.03
NSUP Integer [30,300] 0.01 0.02 0.06 0.02
NREL Integer [10,40] 0.00 0.01 0.01 0.00

1 2 3 4 5
0

25

50

75

6 7 8 9 10

4

6

8

11 12 13 14 15
3.5

4.0

4.5

16 17 18 19 20

3.5

3.6

Original tuning problem (5 parameters), 10th result: 4.63s, 20th result: 3.55s
Reduced tuning problem (3 parameters), 10th result: 3.96s, 20th result: 3.52s

Tuning on SuperLU_DIST (matrix: H2O)

Number of function evaluations

B
es

t t
un

in
g

re
su

lt
(ti

m
e

(s
))

Fig. 6. Benefit of reduced tuning on SuperLU DIST. For the reduced tuning
problem, we use the default parameter values for the LOOKAHEAD and
NREL, without tuning. The figure plots the mean of the best-so-far results of
three runs of each tuner along with their standard deviation (in vertical lines).

function evaluations) can start from 2 or 3 depending on the
tuner, because we do not draw points if the three tuning runs
had any failures (e.g., bad parameter configuration(s) that re-
sult in an out-of-memory error). Such failures are disregarded
when fitting a surrogate model in our tuner settings. Having
such bad parameter configurations led to a poor tuning result,
especially in NoTLA.

It is also worth mentioning that the source task in the
NIMROD experiments used a previous version of CrayMPICH
(7.7.10) then the target tasks (7.7.19) due to a software update
on the Cori supercomputer. This shows that our transfer
learning can also learn from different software versions.

D. Case study of sensitivity analysis: SuperLU DIST

To show the effectiveness of the sensitivity analysis, we con-
sidered the 2D version of SuperLU DIST [2], a distributed-
memory sparse direct solver for non-symmetric linear systems.
SuperLU DIST uses a supernodal representation of the LU
factors with nonuniform supernode sizes with a 2D block-
cyclic process layout. The 2D SuperLU DIST has the follow-
ing tuning parameters: [COLPERM, LOOKAHEAD, nprows,
NSUP, NREL]. Table IV shows an output of running the
sensitivity analysis of SuperLU DIST for an input matrix
Si5H12 [24] using 500 samples collected on four Cori Haswell
nodes. On the S1 and the ST values, the analysis shows that the
COLPERM parameter has the highest influence, then the next
important parameter is nprows. The other three parameters
have less influence on the tuning results, however, NSUP has
a moderate influence on the performance.

The sensitivity analysis quantifies the sensitivity to the
output of each variable. If we need to tune SuperLU DIST
on a different hardware, resource allocation, or a different
input matrix of similar sparsity patterns, we can reduce the
number of tuning parameters, based on this numerical analysis
and the given tuning budget. In the following experiment,
we reduce the tuning problem to tune only COLPERM,
nprows, and NSUP, those have high or moderate S1 and ST

TABLE V
SENSITIVITY ANALYSIS OF HYPRE (INPUT TASK: NX=NY=NZ=100).

Parameter Type Range S1 S1.conf ST ST.conf

Px Integer [1,32) 0.00 0.01 0.01 0.00
Py Integer [1,32) 0.03 0.05 0.35 0.12

Nproc Integer [1,32) 0.01 0.04 0.23 0.07
strong threshold Real [0,1) 0.00 0.00 0.00 0.00

trunc factor Real [0,1) 0.01 0.01 0.03 0.01
P max elmts Integer [1,12) 0.00 0.00 0.00 0.00
coarsen type Categorical 8 choices 0.00 0.00 0.00 0.00

relax type Categorical 6 choices 0.00 0.00 0.00 0.00
smooth type Categorical 5 choices 0.11 0.07 0.71 0.21

smooth num levels Integer [0,5) 0.05 0.05 0.35 0.13
interp type Categorical 7 choices 0.00 0.00 0.00 0.00

agg num levels Integer [0,5) 0.11 0.11 0.56 0.14

1 2 3 4 5
0

10

20

6 7 8 9 10

2

3

4

11 12 13 14 15
1.0

1.5

2.0

2.5

16 17 18 19 20

1.2

1.4

1.6

1.8

Original tuning problem (12 parameters), 10th result: 1.86s, 20th result: 1.63s
Reduced tuning problem (3 parameters), 10th result: 1.38s, 20th result: 1.31s

Tuning on Hypre (nx=ny=nz=120)

Number of function evaluations

B
es

t t
un

in
g

re
su

lt
(ti

m
e

(s
))

Fig. 7. Benefit of reduced tuning on Hypre (IJ). For the reduced
tuning problem, we tune three most sensitive parameters, smooth type,
smooth num levels, and agg num levels, while setting default parameter val-
ues for strong threshold, trunc factor, P max elmts, coarsen type, relax type
(we know the default parameter values) and random values for Px, Py, and
Nproc (we do not know the default values). The figure plots the mean of
the best-so-far results of five runs of each tuner along with their standard
deviation (in vertical lines).

values. Figure 6 shows how a reduced tuning problem can
be useful to achieve a good tuning result using a smaller
tuning budget. Here, we tune a different matrix H2O on
four Haswell nodes, and compare the tuning performance
between the original tuning problem and the reduced tuning
problem that deactivates tuning on the LOOKAHEAD and
NREL parameters. The matrices H2O and Si5H12 (used in
the sensitivity analysis) are from the PARSEC group of the
SuiteSparse Matrix Collection [24] and thus have a similar
sparsity pattern. The results show that, while the tuning on
the original tuning problem has a better initial guess (due
to the randomness), the reduced tuning problem can provide
a better tuning result with a moderate number of function
evaluations. For example, on the 10th tuning results, the
reduced tuning problem can attain 1.17x better tuned result
(14.5% improvement) compared to the original search space.

E. Case study of sensitivity analysis: Hypre

Hypre [3] is a parallel algebraic multigrid solver for sparse
linear systems. Here, we focus on tuning of GMRES with the
BoomerAMG preconditioner that solves the Poisson equation
on structured 3-d grids of [nx, ny, nz]. The tuning problem
contains a large number of tuning parameters (12 parameters),
therefore, it will require a huge number of function evaluations
to attain a near-optimal tuning parameter configuration. We use
sensitivity analysis to reduce the search space of Hypre.

Table V describes the tuning parameters and shows
their Sobol sensitivity scores. For the analysis, we use
1,000 samples pre-collected on a Cori Haswell node for

10

nx=ny=nz=100. The analysis shows that smooth type and
agg num levels have high S1 and ST scores (S1>0.1,
ST>0.5), followed by smoth num levels (S1=0.05, ST=0.35),
Py (S1=0.03, ST=0.35), and Nproc (S1=0.01, ST=0.23). Other
parameters (Px, strong threshold, trunc factor, P max elmts,
coarsen type, relax type, and interp type) have low S1/ST
values close to 0 (lower than 0.05).

In Figure 7, we tune Hypre with a tuning budget of 20
function evaluations. Due to the limited tuning budget, we
chose the three most sensitive parameters, smooth type and
agg num levels, for tuning. The figure shows that we achieve
higher tuning quality on the reduced search space, compared
to tuning on the original search space. Comparing the 10th
tuning results, the reduced tuning achieves 1.35x better result
(25.8% improvement), compared to the original search space.

VII. CONCLUSION

In this paper, we presented a crowd-based autotuning frame-
work called GPTuneCrowd. GPTuneCrowd leverages a shared
autotuning database with a user-friendly tuner interface that
allows users to query relevant data using a simple meta
description. GPTuneCrowd improves existing transfer learning
algorithms and presents an ensemble technique to benefit
from multiple transfer learning algorithms to maximize tuning
quality. We demonstrated the effectiveness of GPTuneCrowd’s
features using synthetic functions and large-scale real-world
tuning problems. In future work, we plan to deploy GP-
TuneCrowd to tune other expensive tuning problems in HPC.
Detecting/diagnosing performance variability of performance
samples (caused by system noise) is also our future work.

ACKNOWLEDGEMENT

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. De-
partment of Energy Office of Science and the National Nuclear
Security Administration. We used resources of the National
Energy Research Scientific Computing Center (NERSC), a
U.S. Department of Energy Office of Science User Facility
operated under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, 1997. [Online].
Available: https://epubs.siam.org/doi/abs/10.1137/1.9780898719642

[2] X. S. Li and J. W. Demmel, “SuperLU DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems,” ACM
Trans. Math. Softw., vol. 29, no. 2, p. 110–140, Jun. 2003. [Online].
Available: https://doi.org/10.1145/779359.779361

[3] R. D. Falgout and U. M. Yang, “hypre: A library of high performance
preconditioners,” in Computational Science — ICCS 2002. P. M. A.
Sloot, A. G. Hoekstra, C. J. K. Tan, and J. J. Dongarra, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 632–641.

[4] C. Sovinec, A. Glasser, T. Gianakon, D. Barnes, R. Nebel, S. Kruger,
S. Plimpton, A. Tarditi, M. Chu, and the NIMROD Team, “Nonlinear
magnetohydrodynamics with high-order finite elements,” J. Comp. Phys.,
vol. 195, p. 355, 2004.

[5] P. Balaprakash, R. Egele, and P. Hovland, “ytopt: Machine-learning-
based search methods for autotuning,” 2019. [Online]. Available:
https://github.com/ytopt-team/ytopt

[6] H. Menon, A. Bhatele, and T. Gamblin, “Auto-tuning parameter choices
in HPC applications using Bayesian optimization,” in 2020 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS),
2020.

[7] R. B. Roy, T. Patel, V. Gadepally, and D. Tiwari, Bliss: Auto-
Tuning Complex Applications Using a Pool of Diverse Lightweight
Learning Models. New York, NY, USA: Association for Computing
Machinery, 2021, p. 1280–1295. [Online]. Available: https://doi.org/10.
1145/3453483.3454109

[8] Y. Liu, W. M. Sid-Lakhdar, O. Marques, X. Zhu, C. Meng, J. W.
Demmel, and X. S. Li, “GPTune: Multitask learning for autotuning
exascale applications,” in Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming.
[Online]. Available: https://doi.org/10.1145/3437801.3441621

[9] F. Hourdin, T. Mauritsen, A. Gettelman, J.-C. Golaz, V. Balaji, Q. Duan,
D. Folini, D. Ji, D. Klocke, Y. Qian et al., “The art and science of climate
model tuning,” Bulletin of the American Meteorological Society, vol. 98,
no. 3, pp. 589–602, 2017.

[10] G. Fursin, “Collective knowledge: organizing research projects as a
database of reusable components and portable workflows with common
apis,” arXiv preprint arXiv:2011.01149, 2020.

[11] Y. Cho, J. W. Demmel, X. S. Li, Y. Liu, and H. Luo, “Enhancing
autotuning capability with a history database,” in The IEEE 14th Inter-
national Symposium on Embedded Multicore/Manycore SoCs (MCSoC-
2021), vol. 20, 2021.

[12] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and
D. Sculley, “Google Vizier: A Service for Black-Box Optimization,”
in Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’17. [Online].
Available: https://doi.org/10.1145/3097983.3098043

[13] X. Zhu, Y. Liu, P. Ghysels, D. Bindel, and X. S. Li, GPTuneBand: Multi-
task and Multi-fidelity Autotuning for Large-scale High Performance
Computing Applications, pp. 1–13. [Online]. Available: https://epubs.
siam.org/doi/abs/10.1137/1.9781611977141.1

[14] H. Luo, J. W. Demmel, Y. Cho, X. S. Li, and Y. Liu, “Non-
smooth bayesian optimization in tuning problems,” arXiv preprint
arXiv:2109.07563, 2021.

[15] H. Luo, Y. Cho, J. W. Demmel, X. S. Li, and Y. Liu, “Hybrid
models for mixed variables in bayesian optimization,” arXiv preprint
arXiv:2206.01409, 2022.

[16] Y. Cho, J. W. Demmel, G. Dinh, H. Luo, X. S. Li, Y. Liu, O. Marques,
and W. M. Sid-Lakhdar. “GPTune user guide,” 2022. [Online].
Available: https://gptune.lbl.gov/documentation/gptune-user-guide/

[17] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek,
S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson,
“Commentary: The materials project: A materials genome approach
to accelerating materials innovation,” APL Materials, pp. 1–11, 2013.
[Online]. Available: https://doi.org/10.1063/1.4812323

[18] K. Chodorow, MongoDB: The Definitive Guide: Powerful and Scalable
Data Storage. O’Reilly Media, Inc., 2013.

[19] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody,
B. R. de Supinski, and S. Futral, “The Spack Package Manager:
Bringing Order to HPC Software Chaos,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’15. [Online]. Available:
https://doi.org/10.1145/2807591.2807623

[20] I. M. Sobol, “Global sensitivity indices for nonlinear mathematical
models and their Monte Carlo estimates,” Mathematics and computers
in simulation, pp. 271–280, 2001.

[21] J. Herman and W. Usher, “SALib: An open-source Python library for
sensitivity analysis,” The Journal of Open Source Software, vol. 2,
no. 9, jan 2017. [Online]. Available: https://doi.org/10.21105/joss.00097

[22] P. Tighineanu, K. Skubch, P. Baireuther, A. Reiss, F. Berkenkamp,
and J. Vinogradska, “Transfer learning with gaussian processes for
bayesian optimization,” in Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics [Online]. Available:
https://proceedings.mlr.press/v151/tighineanu22a.html

[23] P. Sao, X. S. Li, and R. Vuduc, “A communication-avoiding 3d lu
factorization algorithm for sparse matrices,” in 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2018.

[24] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.
[Online]. Available: https://doi.org/10.1145/2049662.2049663

11

