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Abstract—We develop a novel linear-complexity bottom-up
sketching-based algorithm for constructing a H2 matrix, and
present its high performance GPU implementation. The construc-
tion algorithm requires both a black-box sketching operator and
an entry evaluation function. The novelty of our GPU approach
centers around the design and implementation of the above two
operations in batched mode on GPU with accommodation for
variable-size data structures in a batch. The batch algorithms
minimize the number of kernel launches and maximize the
GPU throughput. When applied to covariance matrices, volume
IE matrices and H2 update operations, our proposed GPU
implementation achieves up to 13× speedup over our CPU
implementation, and up to 1000× speedup over an existing
GPU implementation of the top-down sketching-based algorithm
from the H2Opus library. It also achieves a 660× speedup
over an existing sketching-based H construction algorithm from
the ButterflyPACK library. Our work represents the first GPU
implementation of the class of bottom-up sketching-based H2

construction algorithms.
Index Terms—H2-matrix, randomization, adaptive sketching,

GPU

I. INTRODUCTION

Many large-scale dense matrices from scientific and engi-
neering applications exhibit low-rank structure after proper
hierarchical matrix partitioning. Such low-rank structure can
be exploited by hierarchical matrix techniques to enable fast
matrix-vector multiplication and matrix inversion in quasi-
linear time. Examples include integral equation methods for
acoustics, electromagnetics [1]–[3], Stokes flows [4] and
charged particle systems [5], differential equation-based PDE
solvers [6], [7], machine learning methods like kernel ridge
regression [8] and Gaussian processes [9], and various other
structured matrices, e.g., Toeplitz and Cauchy [10].

There exists a broad family of hierarchical matrix tech-
niques, including the H/H2 formats [1]–[3], the hierarchically
off-diagonal low-rank format (HODLR) [11], the hierarchi-
cally semi-separable format (HSS) [12] or hierarchically block
separable format (HBS) [13], the inverse fast multipole method
(IFMM) [14] and the hierarchical interpolative factorization
(HIF) algorithms [15]. These formats can be characterized by
the so-called admissibility condition which determines how
much separated interaction can be low-rank compressed. The
optimal choice of hierarchical format depends on the particular
application, including the dimensionality and discretization
scheme. For high-dimensional problems, weak-admissibility-
based formats such as HODLR, HSS, HBS typically cannot
achieve quasi-linear complexities with the exception of HIF,

which however only has been demonstrated with regular-grid-
based discretization. On the other hand, strong-admissibility-
based formats can attain quasi-linear (e.g. H) and linear com-
plexities (e.g. H2 and IFMM) for high-dimensional problems.
That being said, they usually show larger prefactors and/or
pose challenges for scalable parallel implementations.

This paper focuses on efficient algorithms for the con-
struction of the H2 format. Just like the other hierarchical
matrix formats, a H2 matrix can be efficiently constructed by
assuming that (a) any matrix entry can be computed quickly
on-the-fly [3], [16]–[18] or (b) a fast black-box sketching
operator is available. Here (a) is commonly encountered for
compressing forward operators in integral equations and kernel
matrices. Existing codes include HLIBpro [3], [18], H2Pack
[16], ASKIT [19], GOFMM [20], and GPU implementations
like H2Opus [17] and hmglib [21]. They typically leverage
adaptive cross approximation, proxy surface, or preselected
skeletons to construct the H2 matrix. On the other hand, (b)
is often encountered for compressing frontal matrices in sparse
multifrontal solvers, trace estimation in Bayesian optimization,
or low-rank updating an existing H2 matrix. Unlike (a), there
exist fewer known sketching-based algorithms and implemen-
tations for (b), which include the top-down peeling algorithms
[17], [22], [23] and the more recent bottom-up algorithm [24].

We focus on algorithms based on assumption (b) in this
paper. We propose a partially black-box sketching-based H2

construction algorithm requiring fewer samples compared to
existing algorithms and describe an efficient GPU implemen-
tation, particularly useful for accelerating H2 arithmetic in
sparse multifrontal solvers or Schur complement-based up-
dates. It is worth mentioning that once the H2 matrix has been
constructed, efficient (i.e., low-prefactor) inversion algorithms
have also been recently developed [25], [26] and parallelized
[27], [28]. But there is no GPU algorithm for inversion. This
current paper describes the construction phase forH2 on GPU.
In a future paper, we will describe the GPU algorithm for H2

inversion.
Our main contributions can be summarized as follows:
• We develop a novel partially black-box H2 matrix con-

struction algorithm with linear complexity, which ex-
tends the bottom-up algorithm in [7], [29] from weakly-
admissible HSS to strongly-admissible H2 and permits
adaptive sketching. Compared with the top-down algo-
rithms in [17], [23], the proposed algorithm requires
much fewer samples and is asymptotically faster.



I15

I13

I14

I9

I10

I11

I12

I1

I2

I3

I4

I5

I6

I7

I8

I15

I13 I14

I9 I10 I11 I12

I1 I2 I3 I4 I5 I6 I7 I8

Fig. 1: The leaves of the hierarchical matrix tree forming a
block partitioning of the matrix. Red blocks represent inad-
missible leaves and green blocks represent admissible blocks.
Row and columns indices are hierarchically clustered into a
cluster tree I such that pairs of clusters define blocks within
the matrix.

• We develop a GPU implementation of the construction
algorithm relying on batched dense linear algebra kernels
and batched entry extraction routines. This represents
the first parallel GPU implementation of the partially
black-box or fully black-box [24] bottom-up construction
algorithms.

• We demonstrate the computational efficiency of the pro-
posed algorithm by compressing integral equations and
covariance matrices, and recompressing H2 matrices with
low-rank updates. Our GPU implementation achieves up
to 13× speedup over our CPU implementation, and up
to 1000× speedup over the GPU implementation of a
top-down sketching-based algorithm in H2Opus. It’s also
worth mentioning that our CPU and GPU implementa-
tions share the same code base due to the use of Thrust.

The remainder of the paper is structured as follows: Sec-
tion II introduces H2 matrices and associated preliminaries
including cluster tree and interpolative decomposition. Sec-
tions III and IV describe the main contributions, the adaptive
sketching construction and the high-performance GPU imple-
mentation, respectively. Performance results are reported in
Section V and we conclude in Section VI.

II. PRELIMINARIES

A. Hierarchical Matrices

Hierarchical matrices aim to provide an efficient represen-
tation of dense matrices that are data sparse, where certain
blocks within these dense matrices can be well approximated
by a low-rank form. Many different variants of hierarchical
matrices have been developed over the years, primarily dif-
ferentiating themselves on the block partitioning used and
the representation of the basis vectors used to approximate
the blocks. The block partitioning is typically determined by
first hierarchically clustering the indices of the matrix K into
a cluster tree I , and then performing a dual tree traversal
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Fig. 2: The matrix tree for the hierarchical matrix in Fig. 1
representing the inadmissible blocks in blue, the admissible
leaves in green and the inadmissible leaves in red. In general,
the matrix tree is not a complete tree. The ellipsis represent a
complete subtree of the tree and are omitted for brevity.
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Fig. 3: The basis tree for the hierarchical matrix in Fig. 1
where leaves Uτ are stored explicitly and the shaded inner
nodes are implicitly represented by the nested basis property
using the transfer matrices E.

on I . The traversal generates pairs of clusters (s, t) that
are tested against an admissibility condition that determines
whether the matrix block defined by the cluster pair can be
approximated well by a low-rank matrix. We consider the so-
called general admissibility condition adm which determines
the compressibility of a block based on the distance Dist
between the bounding boxes of the cluster pair (s, t) and the
average of their diameters D:

adm(s, t) = 1, if
D(s) +D(t)

2
≤ ηDist(s, t) (1)

Typically η ≥ 1 indicates the so-called weak admissibility
and η ≤ 0.5 indicates the so-called strong admissibility. The
general admissibility condition is used to perform a dual tree
traversal. The traversal produces a matrix tree where each
node is a cluster pair (s, t) at the same level. If a cluster
pair is deemed inadmissible, the dual tree traversal continues
on their four children until the block defined by the pair is
sufficiently small and thus stored in its original dense form.
The full set of leaves of this matrix tree then define the block
partitioning of the matrix. Fig. 1 illustrates the cluster tree
I whose dual traversal with a general admissibility condition
produced a block partitioning of the matrix where admissible
leaves are shown in green and inadmissible leaves are shown in
red. The corresponding matrix tree is shown in Fig. 2 with the
complete subtrees K13,13 and K14,14 on the diagonal omitted
for brevity. All the leaves within a level of the matrix tree
can be viewed as a block sparse matrix, and one important
property of hierarchical matrices is that the number of blocks
in a row of each level’s block sparse matrix is bounded by



a constant that does not grow with the problem size. This
constant is called the sparsity constant Csp.

More specifically, Fig. 4(a)-(b) shows the block partitioning
of a matrix associated with a set of N = 215 3D geometry
points, using the admissibility parameter η = 0.5, 0.7. Note
that smaller η leads to more refined partitioning of the off-
diagonal blocks, and hence larger sparsity constants Csp.

Let us denote the block of a matrix K determined by a
cluster pair (s, t) as Ks,t, and the set of clusters that form
inadmissible pairs with a cluster τ as Nτ . The set of clusters
(1) that form admissible pairs with cluster τ and (a) whose
parents form inadmissible pairs with parent of τ , are denoted
as Fτ . These notations are summarized in Table I. We also
use MATLAB notation when convenient. Now that we’ve
determined the desired block partitioning, we would like to
represent the admissible blocks Ks,t in a low-rank form. The
H-matrix variant represents each m × n block Ks,t of rank
k as the outer product Ks,t = Us,tV

T
s,t, where Us,t and

Vs,t are m × k and n × k matrices respectively, leading to
O(n log n) storage complexity for the matrix. On the other
hand, theH2-matrix variant use a nested basis to achieve O(n)
storage complexity. Instead of storing independent U and V
matrices for each block, H2-matrices use a common basis for
the block rows/columns defined by each cluster in the cluster
tree, introducing a smaller k × k coupling matrix B for each
block and representing each block as Ks,t = UsBs,tV

T
t . For

simplicity, we assume K is symmetric and real-valued in the
rest of this paper, leading to Vt = UTs . However, our algorithm
can be easily extended to un-symmetric or complex-valued
matrices.

The basis for leaf nodes in the cluster tree are stored
explicitly, and the basis for an inner node τ of the cluster
tree is defined in terms of the basis of its children τ1 and τ2
using transfer matrices E, resulting in a nested basis:

Uτ =

[
Uτ1

Uτ2

] [
Eτ1
Eτ2

]
(2)

Fig. 3 shows a basis tree for the clusters in Fig. 1, where the
clear nodes at the leaf level are stored explicitly and the shaded
internal nodes are represented implicitly using the nested basis
property.

B. Interpolative Decomposition

The interpolative decomposition (ID) aims to compute a
factorization of an m × n matrix A such that A can be
approximated as a linear combination of a set S of selected
columns: A ≈ A(:, S)X , where the rank k = card(S) is
usually selected to satisfy some approximation threshold ε.
We refer to this ID as the column ID. The column ID can be
computed using the column pivoted QR decomposition, where
a column permutation P of A is factored into an orthogonal

TABLE I: Notation

τ A node in the cluster tree
Uτ Basis matrix for a leaf node
Eτ Transfer matrix for an inner node
Bs,t Coupling matrix for admissible node pair (s, t)
Ds,t Dense leaf matrix for inadmissible node pair (s, t)
Nτ Set of clusters that form inadmissible pairs with τ
Fτ Set of clusters that form admissible pairs with τ

factor Q and a triangular factor R: AP = QR. The column
ID can then be computed as follows:

AP = QR =
[
Q1 Q2

] [R1 R2

0 R3

]
= Q1

[
R1 R2

]
+Q2

[
0 R3

]
≈ Q1R1

[
I R−11 R2

]
= A(:, S)

[
I T

]
(3)

By discarding the lower right triangular factor R3 when its
norm becomes small enough to guarantee the approximation
threshold ε for A, we can obtain the interpolation matrix T =
R−11 R2. Similarly, the row ID for A is defined as PA =[
I T

]T
A(S, :), which is typically computed via the column

ID of AT . When referring to matrix column or row indices, we
will refer to the set of selected indices S as the skeletonization
indices and the remaining unselected indices as the redundant
indices R1.

III. SKETCHING CONSTRUCTION

In this section, we discuss the details of the construction of
hierarchical matrices using the sketching algorithm, starting
with the fixed sample version in Section III-A that assumes
that the number of samples needed for construction is known
beforehand. The proposed algorithm represents the extension
of a sketching-based construction algorithm for the HSS
matrix [29] to strongly-admissibleH2 matrices. This algorithm
is then generalized to the adaptive version in Section III-B that
adds additional samples as needed to satisfy a compression
threshold ε. We will assume that the matrix is symmetric
to simplify the discussion, as non-symmetric matrices are a
straightforward modification to the algorithm. We also assume
that a hierarchical block partitioning of the matrix that would
allow for low-rank compression is already computed.

A. Construction with Fixed Sample Size

Let us first assume that we know the representative rank r
of the hierarchical matrix that we’re constructing and specify
an oversampling parameter p designed to assure with high
probability that the total number of samples d = r + p
is sufficient to guarantee the construction to the required
accuracy. To simplify the discussion, let us also assume that the
indices of the matrix are already sorted so that all redundant
indices R within a cluster come before all the skeletonization
indices S. In other words, we drop the permutation matrix
P in column and row IDs in what follows. The randomized
construction algorithm (See Algorithm 1) requires two inputs:

1R is used from this point onward to denote the redundant indices.



Algorithm 1 Proposed H2 construction algorithm for a matrix
K based on sketching (permutation matrices are not shown)
Input: Sample block size d, a hierarchical partitioning of the
blocks of the matrix of L levels, a relative compression
tolerance ε, a black-box function Y = Kblk(Ω) that can
compute Y = KΩ with a random matrix Ω ∈ RN×d in
O(Nd) time, and a function to evaluate any subblock Ks,t.
Output: Skeletonization indices Ĩτ for each node τ . H2

matrix KH with, for each node τ , Uτ , Dτ,b (b ∈ Nτ ), Bτ,b
(b ∈ Fτ ) at the leaf level, and Eτ1 ,Eτ2 , Bτ,b (b ∈ Fτ ) at
higher levels.

1:Y = Kblk(Ω) with a random Ω ∈ RN×d . batchedRand
2:for level l = 1, . . . , L do
3: if l = 1 then . Leaf node
4: for node τ at level l do
5: Ω1

τ = Ω(Iτ , :), Y
1
τ = Y (Iτ , :)

6: end for
7: for node τ at level l do
8: Dτ,b = K(Iτ , Ib) ∀b ∈ Nτ , . batchedGen
9: Y loc

τ = Y 1
τ −

∑
b∈Nτ Dτ,bΩ

1
b . batchedBSRGemm

10: end for
11: while ∃ τ non-converged (via QR of Y loc

τ ) do
12: Ȳ = Kblk(Ω̄) with a random Ω̄ ∈ RN×d . batchedRand
13: Y loc

τ ,Ωlτ , ∀τ at l = updateSamples(Ȳ , Ω̄, l)
14: end while
15: for node τ at level l do
16: Y loc

τ = UτY
loc
τ (Jτ , :) . ID with εl. batchedID

17: Y l+1
τ = Y loc

τ (Jτ , :) . batchedShrink
18: Ωl+1

τ = UTτ Ωlτ . batchedGemm
19: Ĩτ = Iτ (Jτ ) . Pick the Jτ indices from Iτ
20: end for
21: else . Inner node
22: for node τ at level l do
23: Let ν1 and ν2 be the children of τ

24: Īτ = [Ĩν1 , Ĩν2 ],Ωlτ =

[
Ωlν1
Ωlν2

]
, Y lτ =

[
Y lν1
Y lν2

]
25: end for
26: for node τ at level l do

27: Y loc
τ = Y lτ −

[∑
b∈Fν1

Bν1,bΩ
l
b∑

b∈Fν2
Bν2,bΩ

l
b

]
. batchedBSRGemm

28: end for
29: while ∃ τ non-converged (via QR of Y loc

τ ) do
30: Ȳ = Kblk(Ω̄) with a random Ω̄ ∈ RN×d . batchedRand
31: Y loc

τ ,Ωlτ , ∀τ at l = updateSamples(Ȳ , Ω̄, l)
32: end while
33: for node τ at level l do
34: Y loc

τ =

[
Eτ1
Eτ2

]
Y loc
τ (Jτ , :) . ID with εl. batchedID

35: Y l+1
τ = Y loc

τ (Jτ , :) . batchedShrink
36: Ωl+1

τ =
[
ETτ1 ETτ2

]
Ωlτ . batchedGemm

37: Ĩτ = Īτ (Jτ ) . Pick the Jτ indices from Īτ
38: end for
39: end if
40: for node τ at level l do
41: Bτ,b = K(Ĩτ , Ĩb) ∀b ∈ Fτ . batchedGen
42: end for
43:end for

(a) a black box function that computes Y = KΩ with a
random set of vectors Ω ∈ RN×d, and (b) a function used
to evaluate a small number of matrix entries. The algorithm
uses Y to recursively sketch the admissible blocks at each

level of the H2 matrix, after subtracting out contribution to
Y of the inadmissible blocks at each level via direct matrix
entry evaluations. Note that for now one can ignore the while
loops in grey at Lines 11 and 29, which will be explained in
Section III-B in the context of adaptive sampling.

1) Construction at the leaf level: At the leaf level, tthe
influence of the inadmissible leaf blocks is first subtracted out
from the samples so that we are left with just the samples of
the admissible part of the matrix. For each node τ , the dense
blocks Dτ,b, b ∈ Nτ are evaluated using the index sets of its
defining clusters Iτ , Ib, multiplied by the submatrices of the
input vector corresponding to the cluster t, Ω1

t = Ω(It, :) and
then subtracted from the samples submatrix Y 1

τ = Y (Iτ , :).
This is reflected by Line 9 of Algorithm 1: Y loc

τ = Y 1
τ −∑

b∈Nτ Dτ,bΩ
1
b . Fig. 4(c) shows the admissible blocks which

contribute to each Y loc
τ .

Performing the row ID on the samples Y loc
τ for each cluster

τ , Y loc
τ =

[
Tτ I

]T
Y loc
τ (Jτ , :), gives us an interpolation

matrix Tτ that can be used as the interpolation matrix for
the admissible block row/column for the cluster. The basis for
cluster τ can thus be computed using the interpolation matrix
as Uτ =

[
Tτ I

]T
. See Line 16 of Algorithm 1. Let us define

two block unit-triangular matrices:

Wτ =

[
I −TTτ
0 I

]
and Zτ = WT

τ =

[
I 0
−Tτ I

]
(4)

After scaling the block row K(Is, :) by Ws and block column
K(:, It) by Zt, each admissible matrix block K(Is, It) is
modified as

WsK(Is, It)Zt ≈
[
0 0

0 K(Ĩs, Ĩt)

]
, (5)

which can effectively remove the redundant portion of
K(Is, It). The effect of this scaling can be seen for the first
cluster in Fig. 4(d). As we skeletonize a cluster τ , we replace
its original index set Iτ with those selected by the ID: Ĩτ (see
Line 19 of Algorithm 1). This process can be performed in
parallel for all clusters at the leaf level, leading to the leaf
level being skeletonized as in 4(e).

Since Wτ and Zτ are block unit-triangular matrices, invert-
ing them involves simply flipping the sign of the interpolation
matrix, giving us the approximation of the block

K(Is, It) ≈
[
I TTs
0 I

] [
0 0

0 K(Ĩs, Ĩt)

] [
I 0
Tt I

]
=

[
TTs
I

]
K(Ĩs, Ĩt)

[
Tt I

]
= UsK(Ĩs, Ĩt)U

T
t (6)

For each cluster s and t ∈ Fs, the coupling matrix is computed
by directly evaluating the matrix entries at the skeletonization
indices of those clusters: Bs,t = K(Ĩs, Ĩt). Note that for t /∈
Fs, Bs,t is not explicitly formed and will be sketched at higher
levels.

2) Construction at higher levels: To continue the skele-
tonization process beyond the leaf level, we must first ensure
that we have samples of the remaining admissible skeletonized
portion of the matrix. At the end of the skeletonization process
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Fig. 4: (a)-(b) Block partitioning of a hierarchical matrix for a 3D problem of size N = 215 with different η. (c)-(h) The
skeletonization process for the leaf level of the H2-matrix in Fig. 1.

for the leaf level, the matrix K has been transformed by two
block diagonal matrices W 1 and Z1 where the diagonal blocks
are the previously defined Wτ and Zτ matrices, respectively.
We define the transformed matrix K at level l to be Kl =
W lKl−1Zl with K0 = K. To continue the skeletonization
at level l, we need to extract samples Y l of Kl relying only
on the data from the input and output vectors of the previous
levels Y l−1,Ωl−1 with Y 0 = Y = KΩ and Ω0 = Ω. First,
we transform the random input vectors using (Zl)−1 to obtain
the next set of input vectors Ω1 = (Zl)−1Ωl−1. Using these
input vectors on Kl gives us:

Y l = KlΩl = W lKl−1Zl(Zl)−1Ωl−1

= W lKl−1Ωl−1 = W lY l−1 (7)

This allows us to represent the samples at level l, Y l, as
a transformation of the samples of the previous level Y l−1.
In fact, one can see from (5) that Kl has been significantly
sparsified compared with Kl−1 and one doesn’t need to form
Y l and Ωl in full. Instead, substituting (6) into (7) reveals
that one only needs to compute subvectors of Y l and Ωl once
blocks at level l − 1 has been skeletonized.

We can see this for the leaf level and higher levels as
the follows: (a) At the leaf level, we can compute them as
Y 2
τ = Y loc

τ (Jτ , :) (Line 17 of Algorithm 1) and Ω2
τ = UTτ Ω1

τ

(Line 18 of Algorithm 1). (b) At a higher level l, the samples

and random vectors for cluster τ are formed as Ωlτ =

[
Ωlν1
Ωlν2

]
and Y lτ =

[
Y lν1
Y lν2

]
, respectively. Here ν1 and ν2 are the children

of ν. The contribution to Y lτ for Fν1 and Fν2 is subtracted out

as Y loc
τ = Y lτ −

[∑
b∈Fν1

Bν1,bΩ
l
b∑

b∈Fν2
Bν2,bΩ

l
b

]
(see Line 27 of Algorithm

1). Note that the coupling matrices Bν1,b and Bν2,b have
been explicitly formed at the previous level. As an example,
see Fig. 4(f) where Bν1,b and Bν2,b have been marked in
red, and 4(g) for the blocks that contribute to Y loc

τ . Then
the transfer matrices in (2), Eν1 and Eν2 , as well as the
skeleton indices Ĩτ can be computed from the row ID of
Y loc
τ at Line 34 of Algorithm 1. Note that a row permutation

matrix has been ignored at Line 34. Now we can compute
the subvectors of Y l+1 and Ωl+1 as Y l+1

τ = Y loc
τ (Jτ , :) and

Ωl+1
τ =

[
ETτ1 ETτ2

]
Ωlτ , respectively. See 4(h) for blocks that

correspond to Y l+1 and Ωl+1. Finally, for each cluster b ∈ Fτ ,
the coupling matrix is computed by directly evaluating the
matrix entries at the skeletonization indices of those clusters:
Bτ,b = K(Ĩτ , Ĩb).

Algorithm 1 represents the extension of the sketching-based
construction algorithm for the HSS matrix [29] to strongly-
admissible H2 matrices. Therefore, we claim that computa-
tional complexity and error behavior of Algorithm 1 can be
analyzed by extending corresponding analyses in‘ [29]. We
leave the detailed analyses as future work. It is worth noting
that HSS typically reveals large, non-constant ranks causing
superlinear computational complexity for higher-dimensional
problems, but the H2 matrix allows for linear CPU and
memory complexity with small ranks. One can readily see
that Algorithm 1 is an O(N) algorithm assuming the rank r
is a small constant (more precisely, r = O(log 1/ε) and we



assume the tolerance is fixed in this paper), as it only requires
O(r2N) time to generate samples Y and direct evaluation of
O(rN) matrix entries.

B. Construction With Adaptive Sampling

The number of samples needed to satisfy a specific relative
error threshold ε for the construction of a hierarchical matrix
is typically not know beforehand. A few changes to the fixed
rank algorithm are needed to support adaptive construction.
First, before performing ID to determine the skeletonization
indices, we ensure that the current set of samples contain
enough data to approximate the node (see the convergence
test at Lines 11 and 29 of Algorithm 1). This can be achieved
by computing the QR decomposition of a node’s set of sample
vectors Y loc

τ and examining the smallest absolute value of the
diagonal of the triangular factor. If this value is less than
an absolute error threshold εabs, then we consider the node
converged. To support a relative threshold, an approximate
norm of the matrix can be provided via sketching and the
absolute threshold εabs would simply be the product of the
relative threshold ε and the norm. If not converged, we
add more samples by Ȳ = Kblk(Ω̄) with a new random
matrix Ω̄ ∈ RN×d. These new samples are used to update
Ȳ = Kblk(Ω̄) and Ωlτ represented by the updateSamples
function at Lines 13 and 31. When all nodes within a level
have converged, then we can stop adding samples and move
on to ID.

IV. GPU IMPLEMENTATION

We describe the proposed GPU implementation of the
adaptive construction method of Algorithm 1 in Section IV-A,
followed by a performance analysis in Section IV-B.

A. Adaptive GPU Sketching

In this subsection, we explain the GPU implementation of
the proposed algorithm in Algorithm 1 in detail. First, we
note that launching a kernel on the GPU incurs an overhead
that can dominate an application’s runtime if the kernel
has a small compute workload. Likewise, individual memory
allocation for each small kernel can hinder GPU performance.
WhileH2-matrices provide asymptotically optimal storage and
algorithmic complexity, they consist of small dense blocks
whose individual kernel launch and memory allocation become
impractical. Therefore, a more nuanced approach is required
to achieve high performance on GPUs.

In our proposed implementation, the nodes of the trees are
stored contiguously level by level to expose the parallelism
in each level of the tree. Then most operations are split
into two phases: a marshaling phase where data from the
flattened trees relevant to the operation is gathered and a
batched execution phase where batch routines carry out all
operations using a single kernel call. Unless otherwise stated,
the batch count is set to the number of nodes of a given
level. The comments in blue-green in Algorithm 1 indicate the
operations (or loops) that are implemented with GPU kernels.
The marshaling routines are executed on the device using the

Thrust library [30] while the majority of the batched routines
are provided by the KBLAS [31] and MAGMA [32] libraries.
Note that most of the batched operations involve non-uniform-
sized matrices as the cluster sizes and ranks are not constant.
One advantage of this approach is that the same code, with
trivial modification, can run on either CPUs or GPUs. This
is due to that Thrust has multiple parallel CPU backends and
the batched routines can be easily implemented on the CPU
using parallel OpenMP loops around single threaded BLAS
and LAPACK routines. We remark that, when one executes
the proposed algorithm on the GPU, all the data, the black-
box function Kblk(·) and the entry evaluation function fully
reside on GPUs.

We first modify the inputs of Algorithm 1 such that instead
of a function to evaluate any subblock Ks,t on the GPU, we
require a function to evaluate a batch of subblocks on the GPU.
We call this function batched entry generator and it’s invoked
to evaluate all Dτ,b or Bτ,b at a given level l with a single
kernel launch (see Lines 8 and 41 marked by batchedGen).
Next, the random matrices Ω or Ω̄ are generated in a single
kernel and supplied to Kblk(·) to produce Y or Ȳ on the
GPU (see Lines 1, 12, 30 marked by batchedRand). To avoid
large amounts of small memory allocations, the total amount
needed per level is first determined using a Thrust parallel
prefix sum on the block dimensions and then allocated in a
single allocation per operation.

When computing Y loc
τ from Y lτ to ensure that the samples

only include the influence of the admissible blocks as in Fig.
4(c) and 4(g), we use a non-uniform batched block sparse
row (BSR) matrix multiplication routine. For example, the
BSR matrix would include the red dense blocks in Fig. 4(f).
Since no GPU implementation for non-uniform blocks in a
BSR matrix product currently exists, we take advantage of the
sparsity constant described in Section II to split the operation
into at most Csp kernels each performing a batched non-
uniform matrix-matrix multiplication using MAGMA. Each
kernel works on marshaled data in a way that allows us
to update the output vectors in parallel without resorting to
atomic operations; that is to say that only one block from
each row will be involved in each kernel launch, and since
we have at most Csp such kernels, the kernel launch overhead
should not impact performance.

After obtaining a set of samples of the admissible part
of the matrix, the convergence test checks if all nodes have
converged to satisfy the error threshold εl using the method
described in Section III-B. If the current set of samples prove
to be insufficient, additional samples and input vectors are
generated. The updateSamples function at Lines 13 and 31
sweeps any new samples and input vectors up the tree until it
reaches the current level.

Once we’ve acquired a sufficient number of samples Y loc
τ ,

a batched row ID determines the skeletonization indices. As
the row ID is implemented via the column ID on the matrix
transpose. The list of samples are first accumulated using a
batch transpose to allow for more efficient memory access
patterns on the GPU for a column pivoted QR. See Lines 16



and 34 marked by batchedID.
Finally, the input vectors Ωlτ are upswept to the next

level using a batched matrix multiplication (see Lines 18
and 36 marked by batchedGemm) and the samples Y loc

τ are
upswept by first swapping the columns of the previously
transposed samples which are then transposed again to their
row skeletonized form Y l+1

τ (see Lines 17 and 35 marked by
batchedShrink).

B. Performance Analysis

Here we provide a brief analysis of the parallelization per-
formance of Algorithm 1 on the GPU. As described in Section
IV, the operations implemented on GPU are batchedRand,
batchedBSRGemm, batchedID, and batchedShrink, and the
inputs (executed on the GPU as well) are the black-box
function Kblk(·) and batchedGen. Although Section IV and
the numerical results only involve single-GPU implementation,
here we add a few notes regarding the potential extension of
our algorithm to multiple GPUs.

All the batched operations have a batch count set to the
number of nodes at that level. The batch count decreases from
O(N) at the leaf level to (at most) O(1) at the highest level.
When the ranks have the same order of magnitudes across the
levels, the computation workload per node τ remains relatively
constant and hence higher parallel efficiency can be achieved
for lower levels. Note thatH2 is a O(N)-complexity algorithm
dominated by the lower level operations, good overall parallel
efficiency can be achieved for these operations. It is also
worth mentioning that our batched algorithm requires only
L = O(logN) kernel launches, which is a very small cost
compared with the total O(N) computational cost. In fact, the
overhead in kernel launches is negligible compared with the
total execution time, particularly for large N .

For multiple GPUs, the batch count becomes roughly
the number of nodes per level divided by the number of
GPUs. Moreover, all the aforementioned batched operations
do not require inter-GPU communication except for batchedB-
SRGemm, which requires communication of the input vectors
Ω. Also Line 24 of Algorithm 1 may require gathering the
vectors from two GPUs into one.

V. NUMERICAL EVALUATION

In this section, we analyze the performance of Algorithm 1
on three different problems on CPUs and GPUs. We compare
the memory, runtime and accuracy of our algorithm with
other existing high-performance implementations of sketching-
based strongly-admissible hierarchical matrix construction al-
gorithms, including the GPU implementation of the top-down
H2 algorithm [22] from the H2Opus library [17] and the
distributed-memory CPU implementation of the top-down H
algorithm [23] from the ButterflyPACK (v3.2.0) library [33].
To the best of our knowledge, these are the only publicly
available packages supporting sketching-based construction
of strongly-admissible hierarchical matrices (i.e., H2 or H).
Our proposed GPU implementation of Algorithm 1 and the
reference algorithm in H2Opus are executed on an 80GB A100

GPU available on Perlmutter GPU nodes. Our proposed CPU
implementation Algorithm 1 uses OpenBLAS2 routines within
OpenMP parallel loops for the batched operations and Thrust
with the OpenMP backend for the data marshaling, which is
executed using 64 OpenMP threads of an AMD EPYC 7763
processor available on Perlmutter GPU nodes. The reference
algorithm in ButterflyPACK is executed on the same AMD
processor using 64 MPI ranks. In addition to ButterflyPACK
and H2Opus, we also consider comparison with sketching-
based weakly-admissible hierarchical matrix construction al-
gorithms implemented in STRUMPACK (v8.0.0) [34].

A. Test Problems

Throughout the paper, we consider three applications of the
proposed H2 construction algorithm. For the first application,
we look at the construction of spatial statistics covariance
matrices for a 3D Gaussian spatial process on a uniform 3D
distribution of points in a cube and use an exponential kernel
with correlation length l = 0.2:

K(x, y) = e−
|x−y|
l (8)

For the second application, we consider the construction of
the discretized volume integral equation (IE) operator for the
Helmholtz equation among a uniform 3D distribution of points
in a cube and the IE operator is

K(x, y) =
cos (k|x− y|)
|x− y|

, x 6= y (9)

with k fixed to be 3. For these two applications, we use the fast
H2-matrix-vector product from the H2Opus library [17] as the
black box input function Kblk(·) and the direct implementation
of (8) and (9) in batchedGen. For the reference CPU imple-
mentation from ButterflyPACK, we use the H representation
for Kblk(·) and implement batchedGen on CPUs.

For the third application, we extract frontal matrices of
varying sizes in full from the multifrontal factorization of a
uniform-grid discretized 3D Poisson problem. We compare the
performance of the proposed algorithm with other sketching-
based algorithms implemented in STRUMPACK [34] (e.g.
HSS [29], HODLR [22] and HODBF).

In addition to construction of the H2 matrix from these
kernels, we also consider the updating an existing H2 rep-
resentation of the covariance matrix with an additional low-
rank product using the proposed algorithm. This is commonly
encountered during the LU decomposition of hierarchical
matrices or in the multifrontal factorization of sparse matrices.
We use the fast H2-matrix-vector product from H2Opus (and
fast low-rank multiplication) to perform Kblk(·), and an al-
gorithm that extracts entries from the given H2 and low-rank
representations to perform batchedGen.

The cluster tree is constructed as a KD-tree with a leaf
size of 64-256 and a dual tree traversal of the cluster tree
constructs the matrix tree. We measure the approximation
relative error |Kcomp−K|

|K| using a few iterations of the power

2https://github.com/OpenMathLib/OpenBLAS
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(a) Covariance matrix (b) IE matrix (c) Low-rank updated covariance matrix

Fig. 5: The time of the CPU and GPU implementations of Algorithm 1 for the covariance and IE matrices as well as the
covariance matrix updated with a rank 32 low-rank product. Also shown on the time plots is the top-down construction using
H2Opus and ButterflyPACK with its data points labeled with the total samples taken.
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(a) Memory consumption of the IE and covariance kernels (b) Memory consumption of the frontal matrices

Fig. 6: (a) The memory of Algorithm 1 for the covariance and IE matrices. (b) The memory of Algorithm 1 and a few other
sketching-based algorithms in STRUMPACK for the frontal matrices.

method to approximate the 2-norm of the difference between
the constructed hierarchical matrix and the provided sampler
Kblk(·).

B. Computational Complexity

For the IE and covariance kernels, we examine the overall
performance of the algorithm to verify the optimal complexity
of the construction in time and memory. Fig. 5(a) and 5(b)
show the construction time including sampling and entry
generation for various covariance and IE matrices respectively
on the CPU and GPU while figure 5(c) shows the same
statistics for compressing the sum of H2 representation of the
covariance matrix and a rank-32 low-rank product into a new
H2 matrix. The memory usage of the proposed algorithm is
shown in Fig. 6(a). We also show the GPU top-down construc-
tion time from the H2Opus library. The target matrices were
constructed to an error threshold of 10−6 with an admissibility
parameter η = 0.7, 256 initial samples and a leaf size of 64,
while the input H2Opus matrices was constructed to a looser
threshold of 10−5 as the implementation within H2Opus uses
Cholesky QR for the orthogonalization of samples and thus it
is difficult to reliably construct matrices with tight thresholds.
The input ButterflyPACK matrices was also constructed with
a threshold of 10−5.

Our construction algorithm clearly exhibits the expected
optimal runtime complexity with our GPU implementation
showing speedups of up to 13× over our CPU implementation,
up to 660× over ButterflyPACK’s CPU implementation, and

over 1000× faster than H2Opus’ GPU implementation. (see
Fig. 5(a)-(c)). Note that H2Opus runs out of memory on the
problems larger than 65536. Fig. 6(a) shows the expected
linear growth of the memory consumption of the constructed
matrices for the three test problems.

It’s worth mentioning that our algorithm requires O(1)
(more precisely 256 for all data points in Fig. 5) number of
random vectors. In stark contrast, the algorithm in Butterfly-
PACK [23] requires O(logN) random vectors (ranging from
262 to 513 in Fig. 5(a)-(c)). Moreover, H2Opus’s implemen-
tation requires a temporary weak-admissible representation
(HODLR), hence requires much more number of random
vectors (up to 18920) for 3D problems, causing the code to
memory crash for larger problems. In short, we remark that the
proposed algorithm requires significantly less random samples
particularly when the problem size N increases. This dramatic
reduction in the number of random vectors, i.e., the time spent
in Kblk(·), contributes most to the aforementioned speedups
comparing with ButterflyPACK or H2Opus.

Also, note that the largest problem size N = 524288 of
our GPU implementation is limited by the fact that we need
to store both Kblk(·) (consisting of an existing H2 matrix)
and the constructed H2 matrix on the single GPU. Given that
one A100 GPU with 80GB memory is used, the H2 matrix
can consume at most approximately 40GB memory. To handle
larger problem sizes, a multi-GPU implementation will be
considered as our future work.

For the frontal matrices, we only show the memory usage of



(a) (b)

Fig. 7: A breakdown of the construction time by percentage of time taken by each phase on (a) CPU and (b) GPU for varying
problem sizes of the 3D covariance matrix.

Time Rank range Memory Total samples Sample block size Leaf Size Relative Error
Covariance fixed sample 0.860 29-55 22.939 256 256 256 4.139360e-08

adaptive 0.302 45-55 22.956 64 32 256 5.374687e-07
fixed sample 0.348 32-55 13.906 128 128 128 8.404928e-08
adaptive 0.246 42-55 13.930 64 32 128 5.968764e-07

IE fixed sample 0.897 33-66 23.437 256 256 256 2.603808e-08
adaptive 0.428 36-66 23.446 96 32 256 1.120914e-07
fixed sample 0.517 35-66 14.998 128 128 128 6.461307e-08
adaptive 0.392 51-67 15.081 96 32 128 1.614852e-07

TABLE II: The effect of varying the leaf size and sample block size on the memory consumption and ranks of the constructed
matrix as well as runtime and approximation error with a threshold of 10−6 for the 3D problems of size N = 218.

different algorithms as the sketching operator is a full N ×N
matrix. This also limits the largest matrix sizes we can test.
We leave the full integration of the proposed algorithm into
multi-frontal sparse direct solvers as a future work. Fig. 6(b)
shows the memory usage of the proposed algorithm, HSS
[29], HODLR and HODBF. Clearly, our algorithm achieves
the optimal O(N) memory usage. However, note that the
other three algorithms are weak-admissibility-based and their
prefactors can be much smaller.

C. Profiling Results

Fig. 7 breaks down the runtime into the major components
of the construction algorithm on the CPU and the GPU.
The convergence test, where the batched QR decomposition
comprises the majority of the work, represents a significantly
smaller portion of the overall runtime on the CPU compared
to the GPU. This is primarily caused by the batched QR
implementation within KBLAS favoring larger batch sizes
and smaller matrices with it’s unblocked algorithm that only
assigns threads to work on one column at a time. This is
especially apparent for the smaller problem sizes where there
isn’t enough work to saturate the GPU. As the problem size
increases, the overall portion of time spent in the convergence
test on the GPU starts to shrink. The dense and coupling H2

entry generation seems to perform well on both the CPU and
GPU, taking between 10-15% of the total runtime on the CPU
and 15-20% on the GPU. Since we only perform the pivoted
QR decompositions after we’ve determined that the number of
samples are sufficient, the ID phases only take between 5-10%
of the runtime. On both CPU and GPU, the majority of time

is spent in the BSR matrix multiplication and the sampling
phases, both of which are heavily matrix-matrix multiplication
dependent, an operation that is particularly well suited for
GPU execution. The miscellaneous section includes mostly
workspace allocations which can be optimized in the future.

D. Efficacy of Adaptive Sampling

Finally, we demonstrate the effects of the adaptive sampling
on a fixed 3D problem of size N = 218 by varying both the
leaf size and the sampling block size d. Table II shows the
GPU results for both the covariance and IE matrices for leaf
sizes of 128 and 256 and sampling block sizes equal to the
leaf size and fixed at 32. The lower leaf sizes lead to lower
overall memory consumption and lower construction times
while the fixed sampling block sizes lead to overall lower
execution times albeit with a lower resulting accuracy and
slightly higher ranks on the higher levels. This is likely due
to the simple error compensation scheme not fully accounting
for the approximation errors as we sweep up the tree, though
the measured error is still within the threshold of 10−6.

VI. CONCLUSION

This paper presents a GPU algorithm and implementation
of a novel linear-complexity bottom-up sketching-based algo-
rithm for constructing a H2 matrix. The proposed construction
algorithm requires both a black-box sketching operator and an
entry evaluation function, both of which are accelerated by
batched GPU implementations. When applied to covariance
matrices, volume IE matrices and H2 update operations, our
proposed GPU implementation achieves up to 13× speedup



over our CPU implementation, and up to 1000× speedup over
an existing GPU implementation of the top-down sketching-
based algorithm from the H2Opus library. Moreover, the pro-
posed algorithm is capable of handling covariance/IE matrices
with sizes up to N = 524288 using less than 30 GB GPU
memory and we expect the algorithm can go up to N = 1.5
million on a single 80GB A100 GPU with further code
optimizations in the future.

In addition to pushing the limit of the proposed algorithm,
we also plan to investigate the GPU implementation of the
inversion of the H2 matrix [26] and the GPU implementation
of other fully sketching-based construction algorithms such
as [23], [24], as well as the full integration of the proposed
algorithm into sparse multifrontal solvers.
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