Scalable and Memory-Efficient
Kernel Ridge Regression

Gustavo Chavez, Yang Liu, Pieter Ghysels, Xiaoye Sherry Li

Computational Research Division
Lawrence Berkeley National Laboratory
Berkeley, USA

{gichavez,liuyangzhuan,pghysels,xsli} @1bl.gov

Abstract—We present a scalable and memory-efficient frame-
work for kernel ridge regression. We exploit the inherent rank
deficiency of the kernel ridge regression matrix by constructing
an approximation that relies on a hierarchy of low-rank fac-
torizations of tunable accuracy, rather than leverage scores or
other subsampling techniques. Without ever decompressing the
kernel matrix approximation, we propose factorization and solve
methods to compute the weight(s) for a given set of training
and test data. We show that our method performs an optimal
number of operations (’)(r2n) with respect to the number of
training samples (n) due to the underlying numerical low-rank
(r) structure of the kernel matrix. Furthermore, each algorithm
is also presented in the context of a massively parallel computer
system, exploiting two levels of concurrency that take into
account both shared-memory and distributed-memory inter-node
parallelism. In addition, we present a variety of experiments using
popular datasets — small, and large — to show that our approach
provides sufficient accuracy in comparison with state-of-the-art
methods and with the exact (i.e. non-approximated) kernel ridge
regression method. For datasets, in the order of 10° data points,
we show that our framework strong-scales to 10° cores. Finally,
we provide a Python interface to the scikit-learn library so that
scikit-learn can leverage our high-performance solver library to
achieve much-improved performance and memory footprint.

I. INTRODUCTION

Classical ridge regression is designed to find the linear
hyperplane that approximates the data labels well, and at the
same time does not have too large coefficients, namely

n
argmin,, Z(% — X XTw)? + M| XTw]||3,
i—1

where X; are data points (rows of the n x d data matrix X),
y;’s are their labels, y = (y1,...,Yn), w € R™ is the normal
vector to the target hyperplane, and A > 0 is a hyperparameter
of the method. It can be proved (see, for example, [[17]) that
the optimal w is given by

= (XXT 4+ M) ly. (1)

The kernel trick idea is to implicitly embed data points
Xi,...,X, € R into a higher dimensional space, and
summarize the information about this space by an n x n
kernel matrix K, which replaces the matrix XX T This
effectively substitutes the scalar product X; X JT by the element
K(X;, X;) = K,;, that represents the scalar product in some
higher dimensional space.

Elizaveta Rebrova
Department of Mathematics
University of California, Los Angeles
Los Angeles, USA
rebrova@math.ucla.edu

Kernel methods turn out to be extremely efficient non-
parametric methods across a variety of supervised learning
problems and applications [19]. Indeed, with the kernel map,
one can approximate any function or decision boundary
arbitrarily well, given enough training data. In this paper, we
focus on the use of kernel ridge regression (KRR) to solve
classification problems. Algorithm [T] shows the steps needed
for two-class classification.

Algorithm 1 Kernel ridge regression

Input: X — n x d train data matrix;

X’ —m x d test data matrix;

y € {£1}"™ — train labels

Output: ' € {£1}™ — predicted test labels

1. Compute kernel matrix on the train data K;; = K(X;, X;)
where data points X; are the rows of X, 2 =1,...,n.

2. Compute weight vector w by solving the linear system
w=(K+\)ly

3. For each test data sample X! € X', i=1,...,m,
compute kernel vector w.r.t. the train data

K'(i) = (K(X1, X, K(X,, X]))7

4. For each X| € X', predict its class label as

v, = sign(w? K’ (i)

The memory and time required for the exact execution of
Algorithm (1] are O(n?) and O(n?), respectively, with n data
points. This is due to the storage and inversion of the n x n
dense positive definite matrix A = K + AI. Throughput the
text, I denotes identity matrix of the proper size. This is
prohibitively expensive when the dataset is large. On the other
hand, since the classification is fully determined by only the
sign of the scalar product between w and the kernel vector
(see Step 4 of the algorithm), the w vector does not need to
be computed with high accuracy. Therefore, there are ample
opportunities to use approximation algorithms to compute w
in Step 2 of Algorithm [T}

There is a rich literature concerned with the acceleration of
kernel methods, usually based on the efficient approximation
of the kernel map. The most popular approach is to construct
a low-rank matrix approximation of the kernel matrix. This
includes Nystrom-type methods [30], [15]], [20], random feature
maps (to approximate the kernel function directly [24] or

as a preconditioner [5]), and hybrid methods like FALKON
[27], where the Nystrom method is combined with a good
preconditioner to be used in conjugate gradients.

However, the numerical rank of the kernel matrix depends
on parameters, which are, in turn, data-dependent. For example,
the most popular Gaussian kernel matrix

Kij:/Cg(Xi,Xj)v X1,...

g _ Ll — yll%)
K (;l:,y)—exp< 5 72 .
is approximately low-rank only if the value of the hyperparam-
eter h > 0 (radius) is sufficiently large, which might not be
the best choice of h (see also the discussion in [29])).

Other popular kernels with similar properties include the
Laplacian and ANOVA kernels defined as follows:

e)= (L1270,

, X,, = training data

2

5} 3)

K(z,y) = K9 (@hys Yy) - KTk, Yk,) (4)

>

1<ki<..<kp<d

Here p denotes the degree of the ANOVA kernel and zy
represents the k-th component of vector x. Throughout this
paper, the superscript of K is dropped without causing
confusion.

Some methods were proposed to overcome the fact that K is
not necessarily approximately low-rank. For example, one can
start with the initial splitting of the data into classes, so that
between-classes interactions are represented by either sparse
or low-rank parts of the kernel matrix (the examples include
Memory Efficient Kernel Representation [28]], Block Basis
Factorization [29] and k-means kernel ridge regression [34]])

This inspires the main idea of the current work, namely, to
approach the problem of kernel matrix approximation with the
methods created for hierarchical (H [16]) matrix or hierarchical
semi-separable matrix (HSS) representations [6]. This does not
require K to be low-rank, but only some off-diagonal parts to
be rank-deficient, at least, after some suitable preprocessing.
Moreover, one has a freedom to choose this preprocessing
(reordering of the rows and columns of K)) in the best possible
way. One combination of ‘H and HSS matrix formats for the
approximation of K (or A) was proposed in [25], using the
STRUMPACK library for HSS-compression, factorization and
solve, see more details below in Section The authors
also compare various ways to perform preprocessing, and
the one based on recursive 2-means clustering of the data
points is claimed to ensure a better representation of K in the
hierarchical format.

Another predecessor of the current work is the O(dnlogn)
algorithm ASKIT, which uses a block-diagonal-plus-low-rank
hierarchical matrix format to construct an approximate repre-
sentation for the kernel matrix [21]], and later the O(nlogn)
algorithm INV-ASKIT to perform a factorization of the
approximate matrix [36]], [37] (to be used as a direct linear
solver). The authors also propose a geometric (neighbor-based)

way to find basis columns of the sub-blocks of K (needed
for the hierarchical compression), see also [35] and below in
Section [[=Bl

In the current work we improve the compression process
proposed in [25] by a delicate use of the geometrical structure
of kernel matrices (a variation of the approach proposed in [33])).
Our new ideas are summarized below.

« We present a scalable way to approximate kernel matrices
with optimal time and memory complexity, which is
achieved by clustering and neighboring-based preprocess-

ing techniques and the nested bases of the HSS format.
o We applied the above algorithm to classification problems

using Kernel Ridge Regression. Our method achieves
a similar classification error as the exact kernel ridge
regression, and is much faster and more scalable than the
O(n?) exact Kernel Ridge Regression algorithm.

o We developed an efficient hyperparameter tuning method,
taking advantage of the fact that recompression is not
needed when tuning the regularization parameter (see
Algorithm [5] and Section [[I-D).

o We developed a Python interface to scikit-learn classi-
fiers and regressors, enabling faster time and distributed
memory parallelism (in contrast to the shared-memory
parallelism) for scikit-learn users (see Section [[II-EJ.

The rest of the paper is organized as follows: Section [[I-A]
presents a brief review of the data-sparse hierarchically semi-
separable (HSS) matrix representation and the traditional
approaches to construct an HSS representation of a square
matrix A € R™ ™. Section shows a faster sampling
method exploiting the geometry of the data that defines the
kernel matrix, where the samples are computed via approximate
nearest neighbors. In Section we present a new way to
construct HSS matrices efficiently, using the neighboring points
as the samples. In section [[I-D| we discuss the crucial ideas
in the hyperparameter tuning process. Section [[Tl] gives the
experimental support for the proposed framework.

II. METHODS

Section describes the HSS rank-structured matrix
format and briefly discusses randomized HSS construction.
In Section we describe an O(n) algorithm to find
approximate nearest neighbors of the data points, which is based
on the construction of multiple randomized projection trees.
Then in Section we present an efficient HSS construction
algorithm that relies on this nearest neighbor information, and
which avoids the expensive random sampling phase.

A. Hierarchically Semi-Separable matrix representation

The rank-structured HSS matrix representation uses a hi-
erarchical block 2 x 2 partitioning of the matrix, where all
off-diagonal blocks are compressed, or approximated, using
a low-rank product, see Figure [T} Every node ¢ in the HSS
tree, illustrated in Figure 2] has a corresponding index set
I C {1,...,n}. At the last level of the recursion, the diagonal
blocks, i.e., A(I;, I;) = A;; are stored as (small) dense matrices
A;; = D;. All off-diagonal blocks A;; are compressed using a

Fig. 2. Tree for Figure [I] using pos-
tordering. All nodes except the root
store U; and Vj;. Leaves store D;, non-
leaves B;j;, Bj;

Fig. 1. Illustration of an HSS matrix
using 4 levels. Diagonal blocks are
partitioned recursively. Gray blocks
denote the basis matrices.

low-rank factorization A;; ~ U;B;; VJT Moreover, the column
basis matrix U; for a node ¢ with children ¢; and ¢y in the
hierarchy is defined as U; = [U,, 0;0 U,] U;, and hence only
the smaller matrix U; is stored at node i. Only at the leaf
nodes, where U; = l'l-, are the U, stored explicitly. A similar
relation holds for the V; basis matrices, and is referred to as
the nested basis property. For symmetric matrices, U; = V;
and Bij = Bﬂ

We briefly recall two distinct approaches for the construction
of HSS matrices. The most straightforward technique, see [31]],
is to apply low-rank compression to row blocks A(I;, oo \ 1)
and column blocks A(Iyoo \ I;, I;) of A directly, using either
truncated singular value decompositions or the cheaper rank-
revealing QR. The problem with this approach is the complexity,
and the fact that the entire matrix A needs to be explicitly
formed. A second approach to constructing the HSS representa-
tion is through randomized sampling (also referred to as random
projection), as introduced in [22]. The HSS representation is
constructed from random samples S = AS) with a tall and
skinny random matrix (2. The goal of the random sampling is to
reduce the problem to the much smaller sample matrix S, which
is then used to approximate the HSS basis matrices U; and
V; using the interpolative decomposition. The dense diagonal
blocks A;; and the transfer matrices B;; are submatrices of A
and can be computed directly from A. Hence this approach
is called a partially matrix-free method, since it requires a
matrix times (multiple) vector product (AS2) as well as access
to individual elements of A. When a fast matrix-vector product
is available, this randomized construction algorithm has O(rn)
complexity, with 7 the maximum HSS rank, i.e., the maximum
rank over all off-diagonal blocks in the HSS hierarchy. The
randomized sampling construction algorithm is implemented in
the STRUMPACK library [14], [1], and was used in previous
published results for kernel matrix compression [25] and other
applications [26]]. In [235]], the random sampling was performed
with an H-matrix approximation of the kernel.

After construction, the HSS matrix can be factorized into a
ULV form [7], where L is lower triangular and U and V are
orthogonal. This factored form can be used to solve the linear
system.

B. Approximate nearest neighbor search for faster sampling

The role of random projection S = A) is to approximate
column bases (ranges) of sub-matrices of the matrix A. Using
conventional matrix-matrix multiplication to compute .S, the
HSS construction costs O(n?r) (for an n x n matrix of HSS
rank r). Instead, we use a more sophisticated yet cheaper
column sampling, based on a modified neighbor sampling
procedure [21]], [32]. The general idea is as follows. For
the kernel matrix A (formed based on data points with a
kernel function that decays with distance, or, more generally,
dissimilarity) we can use the distance (similarity) between the
points to identify the dominating entries of the kernel matrix.
Then, picking the columns indexed by these dominating nearest
neighbor points, we expect to get a reasonable approximation
to the column basis of a certain sub-matrix of A.

In the case of a Gaussian kernel , the largest entries of
A correspond to the nearest neighbors of the data points in
Euclidean distance. So, the first step would be to find v4y,
nearest neighbors for each data point X;. Finding exact nearest
neighbors involves computing pairwise distances between all
points and takes O(n?d) operations. In order to get (log-)linear
complexity for the whole process, we approximate neighbors of
the data points instead. Following the approach from [21], we
find approximate nearest neighbors (ANN) based on random
projection trees. Random projection trees were proposed as
a more robust analogue of kd-trees in [10] (like in kd-trees,
the direction of the median split is chosen randomly, but the
direction is not necessarily one of the coordinate dimensions,
see [[10, Section 2.3] for more details).

The ANN algorithm (Algorithm [2)) operates on a collection
X ={X1,...,X,} of data points and returns the indices of
closest v,,, neighbors for each point as an n X v, matrix
N. In addition, the corresponding distances for each neighbor
(called scores) is computed as S.

To begin with, the data points are partitioned into the
leaves of the random projection tree as {Lq,...,Ly} =
ConstructRPT(X, 61,,,) Where each leaf L; has approxi-
mately size 6v,y,, (line Ef[) For all members of each leaf the
exact nearest neighbors are found within this same leaf (line 5}
[TT). Note that this reduces the complexity of the exact neighbor
search significantly, given that the leaves are not too big.

Clearly, this selection misses all exact neighbors of the data
points that end up in different leaves. So, the process is repeated
iteratively: new random projection trees are constructed several
times, and only the v,,, best ones out of the union of
Vann previously found neighbours and v, currently found
neighbours are kept as N (line [T2}{I5), see also the illustration
in Figure [3] We define these best neighbors as those with the
shortest distance/score to the respective data points (those
responsible for adding that specific neighbor point to the
collection). We keep these scores S for the future use in the
HSS compression (see the details in Section [[I-C)).

To estimate the quality of the approximate neighbors, we
find the exact neighbors for a small constant number (s = 100,
see line of data points, which can be done with complexity

Algorithm 2 ConstructANN: find approximate nearest neighbors

Input: v,,, — number of approximate neighbors to search

> g = quality of the neighbor approximation

X ={Xy,...,X,} - data points, X; € R?
Output: [N, 8] — n X Vgp, matrices with neighbors of each X; and corresponding scores
1: ¢q=0
2N, 8S=0,0

3: while iter < 30 and ¢ < 0.99 do

> construct random projection tree (RPT), see [1O]
> L; = list of data points inside leaf [of the RPT

> find v, closest points for each X; within its leaf

> keep vann closest neighbors found over previous iterations

> test ANN quality on s = 100 random data points

4: {L1,...,Li} = ConstructRPT(X, 6V4nn)

5: for | =1to k do

6: construct distance matrix D(i, j) for i, € L

7: for ; in L; do

8: Newr(i,:) = Vann elements in L; with smallest D(i, :)
9: Seur(iy:) = Dt Newr (i,)

10: end for

11: end for

12: for i=1ton do

13: N (i,:) = Vann elements in N (i,:) U Ny (7, :) with smallest scores (S(4,:) U Seur (i, 3))
14: S(i,:) = respective scores of N (i, :)

15: end for

16: Xs ={X,,,...,X;, } random sample from X

17: for j =1 to s do

18: Nezact(i5,:) = Vann Lo-closest data points to X;, € X
19: q=q-+ |N(ija:)mNemact(ija:)VVann

20: end for

21: q=q/s

22: end while

> average over s pOil’ltS

O(sn), and compare those with the list of approximate
neighbors, see line We iterate until 99% average quality ¢
(line is reached, or until 30 iterations, thus, taking O(n)
operations, instead of O(n?) for exact neighbor search for all
datapoints.

Another feature of the ANN search is the possibility of
parallelization at least in the construction of the distance
matrices within leaves. For robustness, we choose the number
of neighbors v,,, adaptively: if we observe that more basis
columns are needed (that is, the quality of HSS compression
was not good), we increase Vg,,. The adaptive ANN quantity
results in a more robust approximation process and differen-
tiates our approach from [21] and used for the classification
task in [37]. The latter one just adds random columns in the
situation when there are not enough neighbors.

Some theoretical analysis of the performance of random
projection trees performance in finding approximate neighbors
on the datasets with low intrinsic dimension is shown in
[L1]. There exists a variety of alternative approaches to find
approximate nearest neighbors (e.g., see [2l], [3]] and references
therein). It might be an interesting direction for the future
work to compare various approaches for nearest neighbor
approximation to be used in the column basis construction.
However, our experiments on smaller datasets (when searching
for the exact neighbors is not prohibitively expensive) show that
we are able to achieve enough precision to be as effective for

Fig. 3. Illustration of the approximate nearest neighbor search algorithm,
see Algorithm 2} Multiple random projection trees are constructed (the 2
recursive partitions at the top), and in every tree, the search for the vopnn
nearest neighbors is restricted to the leaves, which are of size ~ 6vgnn.
For data point X, the vgnyn = 2 closest neighbors are found in different
random trees. The result (bottom) after two iterations is found by merging the
approximate neighbors of the two random projection trees, see lines [T2] to [T4]
in Algorithm 2]

the prediction purposes as we would be with exact neighbors.

C. HSS construction using approximate nearest neighbor
information

We present a new approach, Algorithm |3} to construct an
HSS matrix representation, relying on the geometry of the
data that defines the matrix to be compressed, and reducing
the cost compared to the earlier HSS construction approaches
mentioned in Section [[I-A] This algorithm follows the same
outline as the randomized algorithm from [22], but instead
of constructing S through random projection, S is formed
from columns of K (lines [6] and [IT] of Algorithm [3). Like the
algorithm from [22] (excluding the random projection step),
Algorithm 3| has a computational complexity of O(7?n). The
columns used are those corresponding to the nearest neighbors
to all data points in the current node of the HSS tree (lines 3]
and [10), as computed by Algorithm 2]

The algorithm traverses the tree in a bottom-up fashion. At
the leaf level, it selects the important rows (called skeletons) for
each leaf using columns corresponding to the nearest neighbors
of each point in that leaf; at higher levels of the HSS tree,
the skeletons are selected by essentially using the columns
corresponding to the union of the nearest neighbors from the
two children tree nodes which ensures the nested basis property
of HSS.

The row skeletons and the basis matrices U, can be computed
directly from S, (line using an interpolative decomposi-
tion [9]: [X,J] = ID(Y,¢), such that Y =Y (:, J) X + O(e),
where Y (3, J) is a subset of the columns of Y. However, when
the interpolative decomposition picks almost all columns of
Y (STT in line , or, more precisely when |J| > dmax — P,
we conclude that likely not enough columns of K were used.
In that case, the algorithm is restarted with more approximate
nearest neighbors, see Algorithm [In [23], it is shown that
using an HSS tree defined from a clustering algorithm applied
to the input data can drastically reduce the ranks of the
off-diagonal blocks. One can use for instance a recursive
k-means clustering, with & = 2 to obtain a binary cluster
tree, see line [I] in Algorithm [] In Algorithm [3] only the
near-field (neighboring) interactions are considered for the
kernel approximation. For a more general approach, far-field
interactions can be included through so-called proxy points [33].
However, from our experience we conclude that this is not
required for good approximation of typical kernel matrices
with a practical compression tolerance.

D. Training and hyperparameter tuning

Since the accuracy of kernel ridge regression heavily depends
on its two hyperparameters h and A\, we developed an
autotuning training framework to search for an optimal setting
of h and A, see Algorithm [5] Recall that when we construct
the HSS format for the shifted kernel matrix A = K + \I, we
only compress the off-diagonal blocks, and store the diagonal
explicitly in a set of (dense) diagonal blocks. When h changes
we need to re-compress, but when A changes we can avoid
recompression, which is costly. Thus, our tuning strategy is to

Algorithm 3 HSScompression: construction of an HSS matrix
using approximate nearest neighbors
Input: {X,..., X, } — data points, X; € R?
N, 8 — n X Vgnn neighbors and scores for each X;
K;; = K(X;, X;) — kernel matrix
HSS cluster tree
p — oversampling parameter, € — compression tolerance
Output: K — HSS of K, defined by D, U,, B,, .,

1: for node 7 in the HSS tree, in postorder do

2 if 7 is a leaf then

3: D, =K(,,I,)

4 dmax == |I7'| + p

5 N; = dnax €lements of U;er (N(4,:)) \ I, with

smallest scores

6: S, =K(I;,N;) > local sample matrix
7: else > let ;1 and v be two children of 7
8 By, v, :~Bu2,l/1 = K(il/ujuz)
9: dmax = |Lu, | + [Lo,]| +
10: N; = dmax elements of (N, UN,,)\ (I,, UIL,,)
with smallest s;:(o(r%s N
. _ 125] T
11: S; = K(fVZ,NT)}
12: end if
13 [Ur, J;] = ID(ST ¢)
14: if ID failed to reach tolerance ¢ then
15: Failed to compress HSS > restart, see Alg. [
16: end if
17: if 7 is a leaf then
18: fr = IT(JT)
19: else
20: I, =11, 1,)(J,)
21: end if
22: end for

Algorithm 4 HSS compression with adaptive v, selection
Input: X = {X;}" , - data points, X; € R¢
K;; = K(X;, X;) — kernel matrix
Vann — Number of approximate nearest neighbors
p — oversampling parameter, € — compression tolerance
Output: K — HSS of K, defined by D, U, B,, .,
. construct HSS tree via 2-means, cobble, PCA, etc.
: while not successfully compressed do
[V, 8] = Construct ANN(X, venn)

K = HSScompression(X, N, S, K, tree, p, €)
Vann = 2- Vann
: end while

AN A T

search for multiple A\ values for each selected h value. To tune
h, we use an off-the-shelf black-box optimization package
called OpenTuner [4], which takes as inputs an objective
function ComputeCerror and a budget n; (number of
function evaluations) and performs internal optimization by
varying h. For different h values, OpenTuner calls the objective
function, which performs a matrix compression operation
(line 2] of Algorithm [5) and tries multiple A values. Note
that the c—error of the given hyperparameters is defined
at line |11| of Algorithm |5| For each new)\, we update A by
adding it to K’s diagonal entries (line E]), and perform ULV
factorization and solve for each new A (lines [5] and [6). These
operations are much cheaper than compression.

In practice, this strategy saves a considerable amount of time
during both the fit stage (compression, factorization, and solve)
and in the prediction phase (line O] of Algorithm [5) because
we do not evaluate the weight vectors one at a time as in
the classical algorithm (matrix-vector multiplication which is
memory-bound). Instead, we fit a set of weights W (matrix-
matrix multiplication at line 0] which is compute-bound). This
blocking of weights also heavily reuses the (expensive) kernel
evaluation, which is flop intensive in the case of the kernel
since it requires a transcendental function evaluation.

III. EXPERIMENTS

A. Efficiency of approximate nearest neighbor search

The quality and efficiency of the approximate nearest neigh-
bor search, Algorithm [2] is first demonstrated via application of
the algorithm with v, = 128 to subsets of the SUSY dataset
of different sizes. As shown in Figure] ANN converges
typically in less than 30 iterations to reach a quality of 99%.
Moreover, the iteration count depends weakly on the problem
size.

B. Robustness of kernel matrix approximation

To demonstrate the robustness of the HSS approximation
with respect to the relative compression tolerance e, we
randomly select n = 103 samples from the SUSY dataset and
compute the HSS approximations for the Gaussian, Laplacian
and ANOVA (p = 2) kernels with h = 3, A = 4.1. Figure [3]
shows that the relative error of the approximation satisfies
HA*AHF/HAHF < ¢ using the proposed HSS-ANN algorithm.
As described in Algorithm [] the number of ANN required for
any given tolerance is automatically chosen to meet this error
bound. It is worth mentioning that there are no theoretical
guarantees for the HSS approximation quality using either
the proposed ANN algorithm or the more rigorous proxy
point method [18]. However, due to the exponential decay
of many existing kernels, the HSS-ANN algorithm can achieve
reasonably good accuracies as demonstrated by Figure [5]
Moreover, our results in Section [[TI-C| show that the HSS
approximation retains almost the same prediction accuracy as
the exact algorithm.

Figure [6] shows the savings in memory (which translate
to computational efficiency) using the Gaussian kernel while

1 T
0.8
=
B
&
=
C 06
n = 10k
—a—n = 100k
——n = 500k
044 n=1M [
1 1 -

1 1 1 1 1 1 1
6 8 10 12 14 16 18 20 22 24 26
Tteration count (iter)

=
gy =

Fig. 4. History of ANN quality g (defined in Algorithm [2] lines [T9] and [Z1)),
using the SUSY datasets.

1071 F a4 3
102 F =
103 F
10 F
105 F
10-°F
10-7F
105 F
109 F

Gaussian |
—a— Laplacian |
—— ANOVA

wod vl T
10-¢ 107° 107 1073 10=2 107!

HSS compression tolerance (€)

Relative error against dense matrix

1077

Fig. 5. The relative error between the original (dense) kernel matrix and its
corresponding HSS approximation is always smaller than €.

selecting a larger € as compared to the exact (single-precision,
dense representation) kernel ridge regression matrix.

C. Comparison with other methods

Comparisons with FALKON [27] and INV-ASKIT [36]
(more precisely, a similar implementation in the STRUMPACK

100 - T

80 - —

40 —

Memory % of dense
D
3
T
1

20 —

FRRTTI AR TTIT R T TTT AR ATTTT MR T SR rT N A RTTTT M
10-7 1079 107> 10=* 10=3 102 10~*

HSS compression tolerance (¢)

Fig. 6. Memory savings (in percentage) compared to the dense storage of the
kernel matrix for different e.

Algorithm 5 Modeling stage and hyperparameter tuning.

Input: [Anin, Mmas] — Tange of values for kernel parameter h, nj, — number of h trials

A=A, A, ...
Xirain, Xtest — training and testing data sets

, Any] — vector of regularization parameters

Output: h*, * — optimal hyperparameters after (n;, X n,) evaluations.

1: function [C_ERROR, *] = CoMPUTECERROR(h)
2 K = HSScompression(f(Xirain, Xirain),)
3 for j€{1,...,n,} do

4. A = K + AJI

5: [U,L,V] = ULVfactorization(A)

6 W(,j)=(ULV) ly

7 end for

8 K' = K(Xtesta Xtrain)

9: Y==K -W

1. for je{l,...,n,} do

11: c-errors(j) = mean(y != sign(Y;))

12: end for

13: k = argmin(c-errors)

14: return c-errors(k), A(k)

15: end function

16: h* = OpenTuner(ComputeCerror, hmin, Pmaz, Mh)
17: [c_error, A*] = ComputeCerror(h*)

18: return h* 3 *

> see Algorithms 2 and 3
> ULV factorization, A = ULV
> matrix of weights W, size(W) = [n,n,]

> size(K') = [m, n|
> matrix of predictions Y (blocking), size(Y) = [m, n,]

> element-wise sign comparison

> index of the smallest c_error

library) are reported in Table[l] The c_error metric is defined
in Algorithm [3 line [T4] Hyperparameter search was performed
for h and X of the Gaussian kernel (for all codes), with a budget
of ten OpenTuner iterations. We use the same hyperparameters
for the HSS-ANN experiments as for the Exact column to
show that the approximation error introduced by HSS-ANN
is minimal with respect to an exact kernel ridge regression
method (i.e. using only dense linear algebra, and without any
subsampling such as leverage scores). This error also indicates
the best attainable error with kernel ridge regression. The
classification error is computed with one-fold cross validation,
and the training set is comprised of a random subset of the
original dataset of size 10*, whereas the validation and testing
dataset represent 10° disjoint samples.

The total fit time and memory of HSS-ANN and INV-ASKIT
are listed in Table [IIl For all datasets, HSS-ANN can achieve
up to 6x speedup compared to INV-ASKIT for the datasets of
size n = 10%. Although HSS-ANN may have slightly higher
memory usage than INV-ASKIT, the memory complexity of
HSS-ANN is O(nr) as opposed to O(nr log n) for INV-ASKIT.
Therefore for larger datasets, the memory requirement of HSS-
ANN will be preferable.

Using the complete SUSY dataset, 5 million points, parti-
tioned into 80% training, 10% validation, 10% test, and 10
evaluations of OpenTuner we get a classifier with 20.28%
validation error and 20.29% test error (h = 0.55, A = 10),
numbers which are comparable to those reported in the
literature [8], [12]], [27]. Our approximation utilizes all the
data in the training set n to build the kernel ridge regression
matrix of size n X n (i.e. without subsampling to prune data),

[T T T T T T
104 E 3
=z]
[}
g
= 10° E 4
S
%
i L
% 102 E MNIST(d=784) J
O E | —— HEPMASS(d=54) E
[|—+—SUSY(d=8)
1 1 1 1 1 1 1
10 95 26 27 8 29 910
Cores

Fig. 7. Strong scaling n = 106.

and is able to utilize shared and distributed memory parallelism,
in this case, 2'0 = 1024 cores.

Comparisons with [25] are reported in Table Numerical
experiments show significant speedups in favor of the frame-
work presented here: 1.8, 3.5%, 4.8 and 12.1x, respectively.
A key difference against the work under comparison is that our
framework does not rely on the construction of an O(nlogn)
‘H-matrix approximation, to compute an O(n) HSS matrix
approximation, but it constructs the HSS matrix in one pass,
which leads to a decrease in overall the memory footprint of
the kernel ridge regression matrix approximation. Numerical
experiments utilize the same dataset, hyperparameters and the
computational environment as reported in the work [25]].

FALKON [27] c_error
Dataset h A c_error|| h A HSS-ANN[INV-ASKIT [36][Exact
SUSY [4.35|5.28E-04| 25.5 1.30[3.11E+00| 24.3 24.3 24.3
COVTYPE |4.71|4.81E-06 4.7 1.89(5.85E+00 35 35 34
GAS 3.83[1.89E-04 2.2 1.25]2.24E+00 0.3 0.3 0.3
MNIST [8.60|1.10E-04 6.3 5.77| 2.11E-01 2.3 2.3 2.3
HEPMASS [6.98(3.49E-04 9.5 3.54|4.28E+00 9.3 9.0 9.3
LETTER |7.63]|4.83E-05 0.6 0.60(4.83E+00 0.1 0.1 0.1
PENDIGITS [4.05[2.60E-05 0.6 0.94|7.32E-01 0.3 0.3 0.3
TABLE 1

C_ERROR (DEFINED IN ALGORITHM LINE D FOR DIFFERENT METHODS, TRAINING n = 104, TEST AND VALIDATION m = 10%. THE SAME VALUES FOR
A AND h ARE USED FOR THE HSS APPROXIMATION, THE INV-ASKIT [36] EXPERIMENTS AND THE EXACT KERNEL MATRIX.

Dataset HSS-ANN HSS-ANN INY—ASKIT INV-ASKIT

Time (s) [Mem (MB)| Time (s) | Mem (MB)
SUSY 69.2 243.7 104.1 120.6
COVTYPE 23.5 149.1 110.1 138.1
GAS 13.7 93.7 75.8 83.2
MNIST 74.1 305.2 426.3 374.0
HEPMASS 82.2 354.1 55.7 67.4
LETTER 49.5 221.8 69.7 333.1
PENDIGITS 27.7 202.7 65.3 157.6

TABLE T

FIT TIME AND MEMORY WITH HSS-ANN AND INV-ASKIT, TRAINING
n = 10%, TEST AND VALIDATION m = 103.

SUSY COVTYPE
(n=4.5M) (n =0.5M)
Cores 32 512 32 512
HSS construction 1,759.3 1859 | 67.0 17.2
Factorization 181.1 25.8 35.7 5.6
Solve 2.7 0.7 0.2 0.1
Fit total (this work) | 1,943.2 | 2124 | 1029 | 23.0
Fit total in [25] 3,532.1 | 748.6 | 4955 | 276.9
Speed-up vs [25] 1.8x 3.5x% 4.8x 12.1x
TABLE IIT

PERFORMANCE BREAKDOWN (IN SECONDS) WITH DIFFERENT NUMBER OF
PROCESSORS, AND COMPARISON WITH [25]].

D. Parallel performance and large-scale prediction

The following large-scale experiments were performed at
NERSC’s Cori supercomputer. Each compute node of Cori has
two sockets, with a 16-core Intel Xeon E5-2698 v3 (“Haswell”)

processor at 2.3 GHz per socket, and 128 GB DDR4 memory.

We leverage both distributed, and shared-memory parallelism
with MPI and OpenMP, respectively.

The strong scaling experiments are comprised of a random
subset of one million samples for training data, and we report
on the compression time of the matrix. Figure [7| shows the
compression time as we increase the number of processors. A
decrease in time is seen up to 2'° processors.

E. Scikit-learn compatible Python interface

Our kernel algorithms are developed in C++, but we
provide a C interface, and on top of that a Python interface

compatible with the scikit-learn [23|] classifiers and regressors.

The Python interface class STRUMPACKKernel derives from
BaseEstimator and ClassifierMixin, which are the
base classes for all scikit-learn estimators and classifiers. The
STRUMPACKKernel class implements fit, predict and
decision_function member functions. See Listing |I|in

10°F E
g
f 102 =
= I i
I scikit-learn (32 cores) ||
| —a— HSS-ANN (32 cores)
—— HSS-ANN (1280 cores)
10! I

1 1 I I I
40k 60k 100k 200k 500k

Training dataset size (n)

1M

Fig. 8. Time comparison between scikit-learn and HSS-ANN using the SUSY
datasets.

the appendix for an illustration of this Python interface. Note
that the interface can also be used for multi-class classification
through the scikit-learn One-Vs-One or One-Vs-All estimators
or with scikit-learn hyperparameter optimization algorithms
for grid search or random search with cross validation, see for
instance [13]. This is illustrated in Listing 2] in the appendix
with a distributed memory Python example using the SUSY
dataset.

We compare the performance of the standard scikit-learn
(shared memory) kernel ridge regression with that of HSS-ANN
(shared and distributed memory) using the SUSY datasets. As
can be seen from Figure 8] scikit-learn relies on the O(n?)
Cholesky factorization from LAPACK, while HSS-ANN can
attain a much lower computational complexity. In addition,
we can attain significantly reduced computation time with the
distributed-memory implementation of HSS-ANN (that was
tested with 3.07 GHz 1280 POWERY cores of the Summit
supercomputer).

IV. CONCLUSIONS

This work presents a framework for kernel ridge regression
that is scalable and memory efficient. It is scalable in terms of
an optimal number of operations and in its ability to utilize
a massively parallel computer system. It is memory efficient
as it creates an approximation with optimal memory footprint.
We present comparisons with a state-of-the-art Nystrom based
method [27]] with near-optimal O(ny/n) training time, and
with a similar (O(r?n log n)) approach [25] — which requires a

higher memory footprint due to the need for an intermediate ‘H
representation, that in this work is removed by virtue of the use
of approximate nearest neighbors. Numerical experiments in a
distributed memory environment show that our implementation
is able to reduce the time to solution by effectively utilizing
more hardware and that it is possible to select an upper bound
of the approximation error against a fully dense kernel ridge
matrix with a single tunable parameter . Furthermore, this
method compares very favorably against the current kernel ridge
regression implementation in scikit-learn, which is implemented
with O(n?) Cholesky decomposition. We provide an interface
to scikit-learn in order to easily leverage our software within
scikit-learn at a much-improved performance and memory
footprint.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. De-
partment of Energy Office of Science and the National Nuclear
Security Administration. We used resources of the National
Energy Research Scientific Computing Center (NERSC), a U.S.
Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231, and resources of
the Oak Ridge Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract DE-
ACO05-000R22725. E. Rebrova also acknowledges sponsorship
by Capital Fund Management.

REFERENCES

[1] STRUMPACK website. http://portal.nersc.gov/project/sparse/strumpack/.
[2] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. Communications of
the ACM, 51(1):117, 2008.

Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing
for approximate near neighbors. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing, pages 793-801. ACM,
2015.

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
OpenTuner: An extensible framework for program autotuning. In Pro-
ceedings of the 23rd International Conference on Parallel Architectures
and Compilation, PACT 14, pages 303-316, New York, NY, USA, 2014.
ACM.

[5] Haim Avron, Kenneth L. Clarkson, and David P. Woodruff. Faster kernel
ridge regression using sketching and preconditioning. SIAM Journal on
Matrix Analysis and Applications, 38(4):1116-1138, 2017.

S. Chandrasekaran, M. Gu, and W. Lyons. A fast adaptive solver for
hierarchically semiseparable representations. CALCOLO, 42(3):171-185,
Dec 2005.

[7]1 Shiv Chandrasekaran, Ming Gu, and Timothy Pals. A fast ULV
decomposition solver for hierarchically semiseparable representations.
SIAM Journal on Matrix Analysis and Applications, 28(3):603-622, 2006.
Jie Chen, Haim Avron, and Vikas Sindhwani. Hierarchically composi-
tional kernels for scalable nonparametric learning. J. Mach. Learn. Res.,
18(1):2214-2255, January 2017.

[9] Hongwei Cheng, Zydrunas Gimbutas, Per-Gunnar Martinsson, and
Vladimir Rokhlin. On the compression of low rank matrices. SIAM
Journal on Scientific Computing, 26(4):1389-1404, 2005.

Sanjoy Dasgupta and Yoav Freund. Random projection trees for vector
quantization. IEEE Transactions on Information Theory, 55(7):3229—
3242, 2009.

Sanjoy Dasgupta and Kaushik Sinha. Randomized partition trees for
exact nearest neighbor search. In Conference on Learning Theory, pages
317-337, 2013.

[3

=

[4

=

[6

=

[8

=

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(271

[28]

[29]

(30]

[31]

Diego Garcia-Gil, Julidan Luengo, Salvador Garcfa, and Francisco Herrera.
Enabling smart data: Noise filtering in big data classification. Information
Sciences, 479:135-152, 2019.

Aurélien Géron. Hands-on machine learning with Scikit-Learn and
TensorFlow: concepts, tools, and techniques to build intelligent systems.
" O’Reilly Media, Inc.", 2017.

Pieter Ghysels, Xiaoye S. Li, Christopher Gorman, and Frangois-
Henry Rouet. A robust parallel preconditioner for indefinite systems
using hierarchical matrices and randomized sampling. In 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 897-906. IEEE, 2017.

Alex Gittens and Michael W. Mahoney. Revisiting the Nystrom method
for improved large-scale machine learning. The Journal of Machine
Learning Research, 17(1):3977-4041, 2016.

Wolfgang Hackbusch. A Sparse Matrix Arithmetic Based on H-Matrices.
Part I: Introduction to H-Matrices. Computing, 62(2):89-108, 1999.

T. Hastie, R. Tibshirani, and J. Friedman. Unsupervised learning. In
The elements of statistical learning, pages 485-585. Springer, New York,
2009.

Kenneth L. Ho and Leslie. Greengard. A fast direct solver for structured
linear systems by recursive skeletonization. SIAM Journal on Scientific
Computing, 34(5):A2507-A2532, 2012.

Thomas Hofmann, Bernhard Scholkopf, and Alexander J Smola. Kernel
methods in machine learning. The annals of statistics, pages 1171-1220,
2008.

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sampling methods
for the Nystrom method. Journal of Machine Learning Research,
13(Apr):981-1006, 2012.

William B. March, Bo Xiao, and George Biros. ASKIT: approximate
skeletonization kernel-independent treecode in high dimensions. SIAM J.
Scientific Computing, 37(2):1089-1110, 2015.

Per-Gunnar Martinsson. A fast randomized algorithm for computing a
hierarchically semiseparable representation of a matrix. SIAM Journal
on Matrix Analysis and Applications, 32(4):1251-1274, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825-2830, 2011.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel
machines. In Advances in neural information processing systems, pages
1177-1184, 2008.

Elizaveta Rebrova, Gustavo Chédvez, Yang Liu, Pieter Ghysels, and
Xiaoye S. Li. A study of clustering techniques and hierarchical matrix
formats for kernel ridge regression. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2018.

Francois-Henry Rouet, Xiaoye S. Li, Pieter Ghysels, and Artem Napov.
A distributed-memory package for dense hierarchically semi-separable
matrix computations using randomization. ACM Transactions on
Mathematical Software (TOMS), 42(4):27, 2016.

Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. FALKON: An
optimal large scale kernel method. In Advances in Neural Information
Processing Systems, pages 3888-3898, 2017.

Si Si, Cho-Jui Hsieh, and Inderjit S. Dhillon. Memory efficient kernel
approximation. The Journal of Machine Learning Research, 18(1):682—
713, 2017.

Ruoxi Wang, Yingzhou Li, Michael W. Mahoney, and Eric Darve.
Structured block basis factorization for scalable kernel matrix evaluation.
CoRR, abs/1505.00398, 2015.

Christopher K. I. Williams and Matthias Seeger. Using the Nystrom
method to speed up kernel machines. In Advances in neural information
processing systems, pages 682—688, 2001.

Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu, and Xiaoye S. Li.
Fast algorithms for hierarchically semiseparable matrices. Numerical
Linear Algebra with Applications, 17(6):953-976, 2010.

Bo Xiao and George Biros. Parallel algorithms for nearest neighbor search
problems in high dimensions. SIAM Journal on Scientific Computing,
38(5):667-699, 2016.

Xin Ye, Jianlin Xia, and Lexing Ying. Analytical low-rank compression
via proxy point selection. arXiv preprint arXiv:1903.08821, 2019.
Yang You, James Demmel, Cho-Jui Hsieh, and Richard Vuduc. Accurate,
fast and scalable kernel ridge regression on parallel and distributed
systems. In Proceedings of the 2018 International Conference on

W

o v

o

21

27

28
29
30
31
32
33
34
35
36
37

38
39

40
41

Supercomputing, 1CS 18, pages 307-317, New York, NY, USA, 2018.4

ACM.

Chenhan D. Yu, James Levitt, Severin Reiz, and George Biros. Geometry-
oblivious FMM for compressing dense SPD matrices. In Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 53:1-53:14, 2017.

Chenhan D. Yu, William B. March, and George Biros. An N log N
parallel fast direct solver for kernel matrices. In 2017 IEEE International
Parallel and Distributed Processing Symposium, IPDPS, pages 886—896,
2017.

Chenhan D. Yu, William B. March, Bo Xiao, and George Biros. INV-
ASKIT: A parallel fast direct solver for kernel matrices. In 2016 IEEE
International Parallel and Distributed Processing Symposium, IPDPS,
pages 161-171, 2016.

(35]

[36]

[37]

APPENDIX

import numpy as np

import ctypes

from sklearn.base import BaseEstimator,
ClassifierMixin

from sklearn.utils.validation import check_X_ vy,
check_array, check_is_fitted

from sklearn.utils.multiclass import unique_labels

sp = ctypes.cdll.LoadLibrary (’ @CMAKE_INSTALL_PREFIXQ@
/lib/libstrumpack.so’) # path set by CMake
class STRUMPACKKernel (BaseEstimator, ClassifierMixin
) 8
kernel: 'rbf’ ('Gauss’), ’Laplace’ or ’'ANOVA’ (
degree p)

approximation: ’'HSS’ or ’HODLR’
MPI is supported through mpidpy
def __init__ (self, h=1., lam=4.,

p=1, kernel=’

rbf’, approximation=’HSS’, mpi=False, argv=None)
#
def fit(self, X, y):
...
if X.dtype == np.floatb64:
self .K_ = sp.

STRUMPACK_create_kernel_double (
ctypes.c_int (X.shape[0]),
c_int (X.shape[l]),
ctypes.c_void_p (X.ctypes.data),
ctypes.c_double (self.h),
ctypes.c_double(self.lam),
c_int (p), ctypes.c_int (ktype))
...
if self.approximation is ’HSS’:
if self.mpi:
if X.dtype == np.float64:
sp.
STRUMPACK_kernel_fit_HSS_MPI_double (
self.K_, ctypes.c_void_p(y.
ctypes.c_int (argc), argv)

ctypes.

ctypes.

ctypes.data),
#

return self

def predict (self, X):
...
if X.dtype == np.float64:
sp.STRUMPACK_kernel_predict_double (
self.K_, ctypes.c_int (X.shapel[0]),
ctypes.c_void_p (X.ctypes.data),
ctypes.c_void_p (prediction.ctypes.
data))
#
return [self.classes_[0] if prediction[i] <

0.0 else self.classes_[1]
for 1 in range (X.shape[0])]

43

3

© ® 9 o w

15

16

18

19

20

21

40

4
42
43

44
45
46

def decision_function(self, X):

#

Listing 1. Python scikit-learn interface.

#!/bin/python3

Build STRUMPACK as a shared library: -
DBUILD_SHARED_LIBS=ON

Add CMAKE_INSTALL_PREFIX/lib/ to your
LD_LIBRARY_PATH

Add CMAKE_INSTALL_PREFIX/include/python/ to your
PYTHONPATH

import sys, numpy as np, STRUMPACKKernel as sp

from mpidpy import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank ()

parse input parameters

fname = ’./data/susy_10Kn’

h=1.3 # kernel width

lam = 3.11 # regularization parameter
p=1 # ANOVA kernel degree

read training and testing data from comma-
separated value files

np.float32

train_points np.genfromtxt (fname + ’
delimiter=",", dtype=prec)

train_labels np.genfromtxt (fname + ’_train_label.
csv’, delimiter=",", dtype=prec)

test_points np.genfromtxt (fname + ’_test.csv’,
delimiter=",", dtype=prec)

test_labels np.genfromtxt (fname +
7, delimiter=",", dtype=prec)

train_points.shape

test_points.shape[0]

prec

_train.csv’,

— ’

_test_label.csv

d

n,
m

kernel ridge regression classification using HSS
approximation of the kernel
sp.STRUMPACKKernel (h, lam, p,
approximation="HSS’, mpi=True,
K.fit (train_points, train_labels)

K kernel='rbf’,

argv=sys.argqg)

pred = K_HSS.predict (test_points)

check quality, labels are -1 or +1

def quality(p, 1):
return 100.x (m - sum(p[i]*1[i] < O for i in
range(m))) / m

if rank == 0:

print (" HSS KernelRR quality =',
test_labels), '%’)
print (’classes:’,

quality (pred,
K_HSS.classes_)

optionally fine-tune the model using scikit-learns
gridsearch, with cross-validation

from sklearn.model_selection import GridSearchCV #,
RandomizedSearchCV,

grid_list = {"h": np.logspace (-2,
np.logspace (-2, 2, num=3)}

grid_search GridSearchCV (K, param_grid=grid_list,

2, num=3), "lam":

cv=3)
grid_search.fit (train_points, train_labels.round())
if rank == O0:
print ('best_params_ =’, grid_search.
best_params_)
pred_gs = grid_search.predict (test_points)
if rank == 0:

print (' HSS KernelRR grid search quality =',
quality (pred_gs, test_labels), ’'%’)

Listing 2. Example usage of the Python scikit-learn interface to leverage the
STRUMPACK fast solvers capability.

