
ML for Computer Architecture and Systems (MLArchSys), ISCA, 2023

Sample-Efficient Mapspace Optimization for DNN
Accelerators with Bayesian Learning

Grace Dinh∗, Iniyaal Kannan∗, Hengrui Luo†, Charles Hong∗

Younghyun Cho∗, James Demmel∗, Xiaoye Sherry Li†, Yang Liu†
∗UC Berkeley. dinh,iniyaalkannan,charleshong,younghyun,demmel@berkeley.edu

†Lawrence Berkeley National Lab. hrluo,xsli,liuyangzhuan@lbl.gov

Abstract—Achieving high performance for machine learning
domain-specific accelerators requires the careful choice of a
mapping from the algorithm to the accelerator. Most algorithms
for finding mappings either optimize over a coarse performance
model or experimentally evaluate the performance of a large
number of different mappings on the space. However the number
of samples required by these empirical models can be prohibitive
in settings (e.g. when using cycle-accurate simulators) where
evaluations are expensive.

This paper evaluates the use of Bayesian optimization based
approaches for finding mappings for hardware accelerators in
settings where high sample efficiency is required. Our approaches
converge to mappings comparable to that of Timeloop’s mapper
while requiring an order of magnitude fewer iterations. Further-
more, our method produces surrogate models that can be used
for transfer learning to new hardware configurations, further
reducing the sample complexity by roughly a factor of 2.

I. INTRODUCTION

Domain-specific hardware accelerators have become in-
creasingly important in enabling efficient, performant exe-
cution of linear algebra and machine learning applications.
However, attaining good performance on accelerators requires
a careful choice of a mapping describing how the algorithm
is to be executed on the target accelerator. These mappings,
which encompass choices such as tiling dimensions, loop
ordering, and spatio-temporal mappings (i.e. deciding which
axes to map to accelerator parallelism), can significantly affect
performance by up to four orders of magnitude [17].

However, the space of possible mappings (mapspace) is
challenging to search, as the number of choices that comprise
a mapping leads to a combinatorial explosion in the number of
possible mappings. Furthermore, this space is highly noncon-
vex and changes significantly with the target architecture; as
a result, it is desirable for mapping methods to be efficiently
generalizable across a wide variety of hardware parameters and
architectures, especially in settings such as hardware-software
codesign where efficient mappings must be computed for a
wide variety of both algorithmic and hardware targets.

In order to handle complexity of searching over a high-
dimensional mapspace, many approaches rely on performance
models that are either mathematically simple enough to be
optimized over [10], [37] or cheap enough to be queried
thousands or tens of thousands of times [25] in brute-force
approaches. However, as we show in Section II, these models

often diverge from actual performance significantly, limiting
their effectiveness.

Alternatively, feedback-driven approaches, which iteratively
search over the mapspace using black-box search (e.g. genetic
algorithms or reinforcement learning) or gradient descent,
can be guided not only by performance models but also by
measured or simulated performance. However, many previous
methods are extremely sample-inefficient, sometimes requiring
millions of samples to train models [8], and have difficulty
generalizing to new hardware targets or problem dimensions
[13]. This poses unique challenges for the case of hardware
design-space exploration (DSE), where mappings must be
computed for a variety of hardware targets.

This paper explores the use of Bayesian optimization to
find performant mappings in a sample-efficient manner, while
constructing surrogate functions for performance that can be
efficiently queried and optimized. We then use these surro-
gate functions to perform transfer learning across different
hardware configurations, showing that, in contrast to previous
gradient-based approaches [8], [13] and reinforcement learning
approaches [12], our approach can generalize to hardware con-
figurations not in its training set. Our approach also provides
automatic problem-specific sensitivity analysis for mapspace
parameters during optimization.

II. BACKGROUND

Algorithms for finding performant mappings generally fall
into one out of three categories:

• Heuristics perform one-shot analytic optimizations over
a performance model (either defined explicitly to be used
as an optimization target, or embedded implicitly in the
heuristic). Such methods include polyhedral models [1],
[7], [18] and constrained-optimization based approaches
[10], [36]. While heuristics are efficient and generalize
easily across hardware parameters and problem sizes,
they are often limited to optimizing a subset of the
mapspace (e.g. tilings and reorderings only, as in [24]),
and rely on an analytic model which can only coarsely
approximate performance.

• Random search methods [5], [25], [35] use brute force
to sample and evaluate a large number of points in the
mapspace. However, the size of the mapspace (well over

1

mailto:dinh@berkeley.edu
mailto:iniyaalkannan@berkeley.edu
mailto:charleshong@berkeley.edu
mailto:younghyun@berkeley.edu
mailto:demmel@berkeley.edu
mailto:hrluo@lbl.gov
mailto:xsli@lbl.gov
mailto:liuyangzhuan@lbl.gov


1020 points [26]) necessitates a large number of samples
to achieve good performance.

• Feedback-driven methods use statistical or ML methods
to iteratively explore the mapspace. These approaches in-
clude black-box optimization techniques such as genetic
algorithms [12], [14], reinforcement learning [34], and
Bayesian optimization [29], which aim to require fewer
samples than brute-force methods. Alternatively gradient-
based methods [8] build differentiable surrogate functions
that estimate performance based on input parameters.
However, training gradient-based methods require mil-
lions of samples to build surrogate models, and the
resulting surrogates cannot easily be used for hardware
architectures not yet seen even after fine-tuning, and must
be fully retrained from scratch at nontrivial expense [13].

The aforementioned methods tend to be heavily reliant on
performance models to attain good results. This reliance is
explicit in the case of heuristic-based approaches that optimize
objectives that model performance. On the other hand, the
reliance on efficient models is implicit for random search and
many feedback-driven methods: their reliance on thousands or
even millions of performance samples renders them impracti-
cal for use when the cost of performance evaluation is high,
e.g. when using cycle-accurate RTL emulators such as FireSim
[15], which can take several minutes to run a single neural net
layer on a standard AWS FPGA. This is further exacerbated
in the hardware DSE setting, where performance evaluation
must be performed not only for each mapping but also for
each potential hardware backend. As a result, these methods
are often run using fast analytic models such as Timeloop [25]
and Maestro [19] instead.

However, such analytic models can diverge from actual
performance significantly [33]. To see the significance of this
difference, we generated 2000 randomly chosen mappings
for a variety of convolutions and matrix multiplication prob-
lems. We then evaluated the cost of these mappings, first
by executing the code corresponding to these mappings on
the GEMMINI [6] DNN accelerator running on the cycle-
accurate Firesim [15] RTL emulation platform, then by using
an inexpensive analytic performance model, Timeloop [25].
Hardware parameters (memory bandwidth/sizes, systolic array
dimensions, etc.) were identical for both targets. Figure 1
shows a log-log scatter plot of the ratios of the cycle counts
generated by Timeloop and Firesim, which can differ by up
to two orders of magnitude.

As a result, we wish to develop feedback-driven methods
for finding performant methods with high sample efficiency.
Furthermore, we would like our approach to generalize in-
expensively to new hardware configurations. Our approach is
to to use Bayesian optimization, which has been shown to
be effective for optimizing complex functions with a limited
number of evaluations due to its faster convergence and ability
to handle multiple parameters. One of its key strengths is the
construction of surrogate models using Gaussian processes,
which are powerful tools for modeling complex interactions
and potentially noisy functions. Bayesian approaches have

Timeloop = 10×Firesim

Timeloop = Firesim

Timeloop = 0.1×Firesim

Timeloop = 0.01×Firesim

1000 104 105 106 107 108

100

1000

104

105

106

107

108

Firesim cycle count

T
im
e
lo
o
p
cy
cl
e
co
un
t

Fig. 1. Convergence of GPTune and Timeloop’s random-search mapper

been used to perform black-box optimization in domains
where sample efficiency is paramount, including algorithm
optimizations on supercomputers [4], [21] and optimizing
hardware parameters for accelerators [23], [27], [34]. We apply
similar techniques to optimize over software mapspaces for
accelerators, improving on previous attempts to do so [30]
by using an efficient encoding scheme to embed mapping
parameters into a mathematical space that can be more easily
searched.

This paper considers mapspaces consisting of tile sizes and
loop orderings (dataflows) for multilevel memory hierarchies.
Our techniques directly generalize to mapspaces including
spatio-temporal mappings as well; we leave benchmarking
those to future work.

A. Mapspace Encoders
Bayesian optimization assumes an objective function (in

this case, a performance metric such as latency, cycle count,
or energy) that takes as input a set of numerical, usually
continuous, variables. However, decisions that comprise a
point in the mapspace, such as loop orderings, are discrete.
These discrete variables fall into one out of two categories.

Discrete numerical variables, such as tile sizes, are mostly
integral. However, depending on the hardware target, their
discreteness may take the form of a requirement to be a
multiple (e.g. of the size of a vector unit) or factor (e.g. of the
problem size, to allow for perfectly nested loops without tail
cases) of some integer. We represent such variables as contin-
uous variables in the optimization program and round them in
order to find the actual mapping parameters; such rounding
approaches have experimentally been shown to match or
exceed discrete surrogate based approaches [16].

Categorical variables, such as loop orderings, are members
of a finite, unordered set. These variables can be dealt with in
one of two ways:

• by directly applying surrogate-based optimization ap-
proaches to them. Handling categorical variables in op-
timization, especially in Bayesian optimization, poses
unique challenges due to their discrete and unordered
nature, especially in domains comprised of both contin-
uous and categorical variables. Several approaches for

2



integrating the continuous and categorical optimization
methods have been studied, including one-hot encoding
[31], bandit models [28], and hybrid Monte Carlo tree
search [21]. However, the combinatorial complexity of
the mapping problem complicates such approaches; for
instance, a batched convolution with seven nested loops
has 7! = 5040 possible loop orderings per memory level,
and general categorical optimization methods are unable
to take problem-specific information that could guide
search over this space into account (for instance, that
performance is likely to be changed less by swapping the
order of two loops than reversing the entire loop nest).

• by creating a mapspace-specific encoding from contin-
uous variables. For example, for loop orderings, we
optimize over scores for each axis and order the axes
from lowest to highest score. A similar approach, as in
[20], can be used for spatio-temporal mappings.

Dealing with hardware constraints. The set of valid map-
pings is bound by a set of constraints, which we will address in
this section by developing a mapping from an unconstrained
feature space f = (0, 1]d (for some integer d), which can be
easily optimized over, to the set of valid mappings. We will
denote axes of this feature spaces as fi.

Many constraints are simple constant bounds on the numeric
variables (for instance, ensuring that tile sizes must be smaller
than the sizes of the data tensors) and can be dealt with by
scaling the variables appropriately. For instance, instead of
optimizing a loop tile size t under the constraint that it is
bounded above by the size s of the input problem, we can
instead optimize a value f ∈ (0, 1] and set t = sf .

However, other constraints may result in more complicated
inequalities. For example, consider a 2D convolution with b
batches, c input channels, k output channels, and windows of
size r× s, outputs of size w×h. If we wish to tile these axes
in such a way that the tiled inputs and weights can fit into a
scratchpad of size M , the tile sizes tb, tc, ... must satisfy the
following constraint:

tctktrts + tbtc(tw + tr)(th + ts) ≤ M (1)

Rejection sampling is often used to handle such constraints,
but has two drawbacks. First, setting an objective value to
assign to invalid mappings is a nontrivial hyperparameter op-
timization problem; an overly high value can cause unwanted
behavior in a learned surrogate function (leading to unpre-
dictable behavior when, for instance, doing transfer learning),
while an overly low value may not be enough to discourage
the optimizer from considering invalid maps. Furthermore,
the rejection probability can be high - increasingly so as
the dimensionality increases - significantly driving up the
number of iterations required. In fact, prior work [30] requires
sampling 22K points in order to produce 150 valid mappings,
which drastically increases the cost of this approach.

As a result, our goal is to develop a mapping from every
point of f to a valid point in the mapspace. Since all nontrivial
constraints in the mapspace take the form of capacity con-
straints similar to that of (1) over the tile sizes [10], we instead

optimize the aspect ratio of the tiles, and then scale all the tile
sizes by the same factor to maximize memory utilization. We
believe this approach also improves the ability of the learned
model to generalize across problem sizes, as communication-
optimal tiles for many problems such as matrix multiplication
[11] retain the same aspect ratio (square tiles) as long as
problem sizes are sufficiently large.

More concretely, consider the memory constraint given in
(1). Instead of directly optimizing over the tile sizes tb,c,...,
we optimize the variables fb,c,... ∈ (0, 1], which we scale by
a common multiplier α to obtain

tb,c,... ≈ αfb,c,... (2)

In order to determine the value of α, notice that substituting
(2) into (1) gives the following inequality:

α4 [fcfkfrfs + fbfc(fw + fr)(fh + fs)] ≤ M (3)

As there is no reason not to maximize memory utilization, we
replace the inequality with equality, which therefore provides
the value of α:

α =

(
M

fcfkfrfs + fbfc(fw + fr)(fh + fs)

)1/4

We can then round the resulting values of αfb,c,... down to the
nearest valid value (to satisfy discreteness and maximum tile
size constraints) of tb,c,..., ensuring that each point f⃗ ∈ (0, 1]d

corresponds to a valid mapping.

III. EVALUATION

For our experiments, we optimize for energy cost on a
hardware model based on GEMMINI [6] with a four-level
memory hierarchy: a register, an accumulator for the outputs,
a scratchpad for the inputs and weights, and DRAM. We
test our mappings on Timeloop [25], which takes as input
an algorithm and a hardware configuration and provides (1)
an analytic performance model for energy and latency and (2)
a pruned random search based mapper. While our approach is
designed to target hardware models with far higher per-sample
cost than than Timeloop’s model, we use Timeloop in order to
allow for the use of its random-search mappers (which would
be infeasibly expensive if run with a cycle-accurate simulator)
as a comparison target. We leave benchmarking on an (ex-
pensive) cycle-accurate simulator and comparing performance
to model-based (brute-force and heuristic) mappers to future
work.

To perform Bayesian optimization, we use GPTune [3],
an autotuning suite designed for optimizing applications by
utilizing Bayesian approaches. GPTune incorporates multi-task
learning and transfer learning algorithms to share knowledge
of obtained performance samples among multiple tasks, im-
proving tuning results. It enables quick prediction of optimal
tuning parameters for new tasks using data from existing tasks.
Additionally, GPTune supports multi-objective tuning, hybrid
models [21] for mixed categorical and continuous variables,
and non-smooth objective tuning [22].

In order to reduce statistical variance, all experiments were
averaged over three independent runs.

3



Fig. 2. Energy (lower is better) attained by Timeloop’s brute-force mapper and
GPTune for matrix multiplication (left) and 2D convolution (right). GPTune
was run for 100 iterations; the best value found is indicated with dotted line
extending to the right.

A. Convergence

Figure 2 shows the energy consumption of the best map-
ping found so far at each iteration, comparing Timeloop and
GPTune (we run 100 iterations for GPTune).

For GPTune, we show results for both approaches to opti-
mizing over categorical variables (in this case, loop orderings)
described in Subsection II-A. We note that directly embedding
loop orderings into the problem produces superior results to
the score-based approach for matrix multiplication but inferior
results for convolutions, likely because of the higher dimen-
sionality of convolutions compared to matmuls: a 3-nested
loop matmul leads to roughly (3!)4 = 1296 choices for loop
orderings over the four levels of the memory hierarchy, while
the 7-nested loop convolution results in roughly (7!)4 ≈ 6e14
choices. This suggests using categorical encodings works well
for relatively low-dimensional problems, whereas score-based
encodings are better for higher-dimensional problems.

For matrix multiplication, GPTune converges in roughly 20
runs to 2.98 pJ/compute, a value 16% better than the 3.56
pJ/compute that Timeloop achieves after 4000 runs (note that
Timeloop plateaus after an average of 420 iterations).

For 2D convolutions, GPTune converges in (on average)
50 iterations to a minimum of 5.26 pJ/compute, a value that
it took an average of 627 iterations for Timeloop to beat.
Furthermore, after 4000 iterations, Timeloop’s best value was
4.32 pJ/J, roughly 17% better than GPTune’s.

B. Transfer Learning

In many settings, such as hardware DSE, the ability to lever-
age data collected on one or more hardware configurations to
guide search on a hitherto unseen hardware configuration can
prove useful. However, support for transfer learning across
hardware configurations has proven limited so far. Random
search and many black-box optimization algorithms, such
as genetic algorithms (e.g. GAMMA [12]) do not support
transfer learning and must be run from scratch for every
hardware target and algorithm. Attempts to apply the dif-
ferentiable surrogate models found by Mind Mappings [8]
to hardware architectures not in the training set resulted in
performance one to two orders of magnitude worse than run-
ning Timeloop’s random mapper and GAMMA from scratch.

Fig. 3. Transfer learning to a new (not in training set) hardware configuration
for matrix multiplication, compared to GPTune with no prior knowledge and
Timeloop.

Previous Bayesian optimization based approaches to mapspace
search [30] have not considered transfer learning.

The Gaussian process surrogate models produced by GP-
Tune possess the capability to facilitate transfer learning. We
first train a surrogate model taking into consideration both task
parameters (i.e., tensor dimensions) and hardware parameters
(i.e., memory hierarchy specifications), utilizing GPTune’s
multitask learning algorithm for four distinct memory hier-
archy configurations. Subsequently, we refine this model for
20 iterations, employing the target hardware configuration that
was absent from the initial training set.

Figure 3 shows the transfer learning, which converges
to a mapping providing 3.81pJ/compute (on par with an
uninitialized GPTune) in 10 iterations (roughly half that of
an uninitialized GPTune). This figure requires Timeloop an
average of 1600 iterations to beat.

C. Sensitivity Analysis

The surrogate models can be used for sensitivity analysis as
well, by applying Sobol analysis [32] to attribute the part of the
variance of the output can be attributed to each of the inputs.
We leverage GPTune’s sensitivity analysis interface, which
internally invokes SALib [9] for computing Sobol indices from
the trained surrogate model. For matrix multiplication, the
most important axes were the tilings of the 64 × 512 × 128
matrix multiplication example shown in Figure 2, the most
important axes were the tilings of k at the register and
accumulator levels, and the tiling of j at the register level;
the surrogate model was several orders of magnitude more
sensitive to the tiling parameters than the loop ordering ones,
which lines up with previous work [13], [35] showing that
tilings are the most important mapping parameter.

For high-dimensional problems such as convolutions, we be-
lieve this surrogate model may be used to perform automated
dimension reduction - perhaps even during the optimization
process itself; we leave this to future work.

4



IV. CONCLUSION, DISCUSSION, AND FUTURE WORK

This paper demonstrates the feasibility of using Bayesian
optimization to perform mapspace search using very few
(under 100) samples, which can be reduced even further by
using transfer learning from data collected for other hardware
configurations. Key to our approach is the construction of
an encoding scheme that ensures that every point in the
search space given to the Bayesian algorithm corresponds to
a valid mapping. The clearest application of this approach is
to settings where the cost of measuring performance data is
expensive, such as running code on cycle-accurate simulators,
especially in the context of hardware design-space exploration.
The construction of compiler infrastructure required to test the
performance of our approaches on these simulators is currently
ongoing.

It may also be interesting to extend the Bayesian multitask
learning approaches for transfer learning across hardware
configurations, as seen in this paper, to transfer learning across
different hardware simulation fidelities. Using a large number
of samples from a cheap but coarse model to guide search
over a much more expensive space may allow for exploration
of a large portion of the mapspace without wholly relying on
the accuracy of performance models.

In a similar vein, we wish to experiment with the use of
analytic one-shot models, such as CoSA [10] and theoretically
optimal tiling methods based on Brascamp-Lieb inequalities
[2], [24]. While these methods are reliant on analytic models
for performance and may not be optimal in practice on real
hardware, they can provide cheap initial data points that may
help to significantly accelerate search.

We are also investigating more sophisticated approaches for
high-dimensional Bayesian optimization that combine multiple
techniques that are tailored to various application domains.

REFERENCES

[1] A. Acharya, U. Bondhugula, and A. Cohen, “An approach for finding
permutations quickly: Fusion and dimension matching,” arXiv preprint
arXiv:1803.10726, 2018.

[2] A. Chen, J. Demmel, G. Dinh, M. Haberle, and O. Holtz,
“Communication bounds for convolutional neural networks,” in
Proceedings of the Platform for Advanced Scientific Computing
Conference, ser. PASC ’22. New York, NY, USA: Association for
Computing Machinery, 2022. [Online]. Available: https://doi.org/10.
1145/3539781.3539784

[3] Y. Cho, J. W. Demmel, G. Dinh, X. S. Li, Y. Liu, H. Luo,
O. Marques, and W. M. Sid-Lakhdar, “GPTune user guide,” 2022.
[Online]. Available: https://github.com/gptune/GPTune/tree/master/Doc

[4] Y. Cho, J. W. Demmel, J. King, X. S. Li, Y. Liu, and H. Luo, “Harnessing
the Crowd for Autotuning High-Performance Computing Applications,”
in The 37th IEEE International Parallel and Distributed Processing
Symposium (IPDPS23). IEEE, 2023, pp. 1–12.

[5] S. Dave, Y. Kim, S. Avancha, K. Lee, and A. Shrivastava,
“DMazeRunner: Executing perfectly nested loops on dataflow
accelerators,” ACM Transactions on Embedded Computing Systems,
vol. 18, no. 5s, pp. 1–27, oct 2019. [Online]. Available:
https://doi.org/10.1145%2F3358198

[6] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanovic, B. Nikolic, and Y. S. Shao,
“Gemmini: Enabling systematic deep-learning architecture evaluation
via full-stack integration,” in Proceedings of the 58th Annual Design
Automation Conference (DAC), 2021.

[7] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L.-
N. Pouchet, “Polly-polyhedral optimization in llvm,” in Proceedings of
the First International Workshop on Polyhedral Compilation Techniques
(IMPACT), 2011.

[8] K. Hegde, P.-A. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W.
Fletcher, “Mind mappings: enabling efficient algorithm-accelerator
mapping space search,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, apr 2021. [Online]. Available:
https://doi.org/10.1145%2F3445814.3446762

[9] J. Herman and W. Usher, “Salib: An open-source python library for
sensitivity analysis,” Journal of Open Source Software, vol. 2, no. 9,
p. 97, 2017. [Online]. Available: https://doi.org/10.21105/joss.00097

[10] Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah, J. Demmel,
J. Wawrzynek, and Y. S. Shao, “Cosa: Scheduling by constrained
optimization for spatial accelerators,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2021, pp. 554–566.

[11] D. Irony, S. Toledo, and A. Tiskin, “Communication lower bounds
for distributed-memory matrix multiplication,” Journal of Parallel
and Distributed Computing, vol. 64, no. 9, pp. 1017–1026, 2004.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0743731504000437

[12] S.-C. Kao and T. Krishna, “Gamma: Automating the hw mapping of
dnn models on accelerators via genetic algorithm,” in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), 2020,
pp. 1–9.

[13] S.-C. Kao, A. Parashar, P.-A. Tsai, and T. Krishna, “Demystifying map
space exploration for NPUs,” in 2022 IEEE International Symposium
on Workload Characterization (IISWC). IEEE, nov 2022. [Online].
Available: https://doi.org/10.1109%2Fiiswc55918.2022.00031

[14] S.-C. Kao, M. Pellauer, A. Parashar, and T. Krishna, “Digamma:
Domain-aware genetic algorithm for hw-mapping co-optimization for
dnn accelerators,” in Proceedings of the 2022 Conference and Exhibition
on Design, Automation and Test in Europe, ser. DATE ’22. Leuven,
BEL: European Design and Automation Association, 2022, pp. 232–237.

[15] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
N. Pemberton, E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs,
B. Nikolic, R. Katz, J. Bachrach, and K. Asanovic, “Firesim: Fpga-
accelerated cycle-exact scale-out system simulation in the public cloud,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), 2018, pp. 29–42.

[16] R. Karlsson, L. Bliek, S. Verwer, and M. de Weerdt, “Continuous
surrogate-based optimization algorithms are well-suited for expensive
discrete problems,” in Communications in Computer and Information
Science. Springer International Publishing, 2021, pp. 48–63. [Online].
Available: https://doi.org/10.1007%2F978-3-030-76640-5 4

[17] S. Kim, C. Hooper, T. Wattanawong, M. Kang, R. Yan, H. Genc,
G. Dinh, Q. Huang, K. Keutzer, M. W. Mahoney, Y. S. Shao, and
A. Gholami, “Full stack optimization of transformer inference: a survey,”
02 2023. [Online]. Available: https://arxiv.org/pdf/2302.14017.pdf

[18] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P. Sa-
dayappan, “When polyhedral transformations meet simd code genera-
tion,” in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2013.

[19] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and
T. Krishna, “Understanding reuse, performance, and hardware cost of
dnn dataflow: A data-centric approach,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’52. New York, NY, USA: Association for Computing
Machinery, 2019, pp. 754–768. [Online]. Available: https://doi.org/10.
1145/3352460.3358252

[20] Y. Lin, M. Yang, and S. Han, “Naas: Neural accelerator architecture
search,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE Press, 2021, pp. 1051–1056. [Online]. Available:
https://doi.org/10.1109/DAC18074.2021.9586250

[21] H. Luo, Y. Cho, J. W. Demmel, X. S. Li, and Y. Liu, “Hybrid Models
for Mixed Variables in Bayesian Optimization,” arXiv:2206.01409, pp.
1–56, 2022.

[22] H. Luo, J. W. Demmel, Y. Cho, X. S. Li, and Y. Liu, “Non-smooth
Bayesian Optimization in Tuning Problems,” arXiv:2109.07563, pp. 1–
61, 2021.

[23] A. Mehrabi, A. Manocha, B. C. Lee, and D. J. Sorin, “Bayesian
optimization for efficient accelerator synthesis,” ACM Transactions on

5

https://doi.org/10.1145/3539781.3539784
https://doi.org/10.1145/3539781.3539784
https://github.com/gptune/GPTune/tree/master/Doc
https://doi.org/10.1145%2F3358198
https://doi.org/10.1145%2F3445814.3446762
https://doi.org/10.21105/joss.00097
https://www.sciencedirect.com/science/article/pii/S0743731504000437
https://www.sciencedirect.com/science/article/pii/S0743731504000437
https://doi.org/10.1109%2Fiiswc55918.2022.00031
https://doi.org/10.1007%2F978-3-030-76640-5_4
https://arxiv.org/pdf/2302.14017.pdf
https://doi.org/10.1145/3352460.3358252
https://doi.org/10.1145/3352460.3358252
https://doi.org/10.1109/DAC18074.2021.9586250


Architecture and Code Optimization, vol. 18, no. 1, pp. 1–25, dec
2020. [Online]. Available: https://doi.org/10.1145%2F3427377

[24] A. Olivry, G. Iooss, N. Tollenaere, A. Rountev, P. Sadayappan,
and F. Rastello, “IOOpt: automatic derivation of i/o complexity
bounds for affine programs,” in Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation. ACM, jun 2021. [Online]. Available: https:
//doi.org/10.1145%2F3453483.3454103

[25] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
systematic approach to dnn accelerator evaluation,” in 2019 IEEE inter-
national symposium on performance analysis of systems and software
(ISPASS). IEEE, 2019, pp. 304–315.

[26] S. Pati, S. Aga, N. Jayasena, and M. D. Sinclair, “Demystifying bert:
Implications for accelerator design,” in International Symposium on
Workload Characterization (IISWC), 2021.

[27] B. Reagen, J. M. Hernandez-Lobato, R. Adolf, M. Gelbart, P. What-
mough, G.-Y. Wei, and D. Brooks, “A case for efficient acceler-
ator design space exploration via bayesian optimization,” in 2017
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), 2017, pp. 1–6.

[28] B. Ru, A. Alvi, V. Nguyen, M. A. Osborne, and S. Roberts, “Bayesian
optimisation over multiple continuous and categorical inputs,” in Inter-
national Conference on Machine Learning. PMLR, 2020, pp. 8276–
8285.

[29] C. Sakhuja, Z. Shi, and C. Lin, “Leveraging domain information for the
efficient automated design of deep learning accelerators,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2023, pp. 287–301.

[30] Z. Shi, C. Sakhuja, M. Hashemi, K. Swersky, and C. Lin, “Using
bayesian optimization for hardware/software co-design of neural accel-
erators,” in Workshop on ML for Systems at the Conference on Neural
Information Processing Systems (NeurIPS), 2020.

[31] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian opti-
mization of machine learning algorithms,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 2, ser. NIPS’12. Red Hook, NY, USA: Curran Associates Inc.,
2012, pp. 2951–2959.

[32] I. M. Sobol, “Global sensitivity indices for nonlinear mathematical
models and their Monte Carlo estimates,” Mathematics and computers
in simulation, pp. 271–280, 2001.

[33] S. L. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks, “Quantifying
sources of error in mcpat and potential impacts on architectural studies,”
in 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), 2015, pp. 577–589.

[34] Q. Xiao, S. Zheng, B. Wu, P. Xu, X. Qian, and Y. Liang,
“HASCO: Towards agile HArdware and software CO-design for
tensor computation,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, jun 2021.
[Online]. Available: https://doi.org/10.1109%2Fisca52012.2021.00086

[35] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina et al., “Interstellar: Using halide’s scheduling language
to analyze dnn accelerators,” in Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, 2020, pp. 369–383.

[36] Y. Zhang, N. Zhang, T. Zhao, M. Vilim, M. Shahbaz, and K. Olukotun,
“Sara: Scaling a reconfigurable dataflow accelerator,” in Proceedings of
the 48th Annual International Symposium on Computer Architecture,
ser. ISCA ’21. IEEE Press, 2021, pp. 1041–1054. [Online]. Available:
https://doi-org.libproxy.berkeley.edu/10.1109/ISCA52012.2021.00085

[37] S. Zheng, R. Chen, A. Wei, Y. Jin, Q. Han, L. Lu, B. Wu, X. Li,
S. Yan, and Y. Liang, “Amos: enabling automatic mapping for tensor
computations on spatial accelerators with hardware abstraction.” in
Proceedings of the International Symposium on Computer Architecture
(ISCA), 2022.

6

https://doi.org/10.1145%2F3427377
https://doi.org/10.1145%2F3453483.3454103
https://doi.org/10.1145%2F3453483.3454103
https://doi.org/10.1109%2Fisca52012.2021.00086
https://doi-org.libproxy.berkeley.edu/10.1109/ISCA52012.2021.00085

	Introduction
	Background
	Mapspace Encoders

	Evaluation
	Convergence
	Transfer Learning
	Sensitivity Analysis

	Conclusion, Discussion, and Future Work
	References

