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and Eric Michielssen, Fellow, IEEE

Abstract—A scalable parallel plane-wave time-domain (PWTD)
algorithm for efficient and accurate analysis of transient scattering
from electrically large objects is presented. The algorithm pro-
duces scalable communication patterns on very large numbers
of processors by leveraging two mechanisms: 1) a hierarchical
parallelization strategy to evenly distribute the computation and
memory loads at all levels of the PWTD tree among processors
and 2) a novel asynchronous communication scheme to reduce
the cost and memory requirement of the communications between
the processors. The efficiency and accuracy of the algorithm are
demonstrated through its applications to the analysis of transient
scattering from a perfect electrically conducting (PEC) sphere
with a diameter of 70 wavelengths and a PEC square plate with
a dimension of 160 wavelengths. Furthermore, the proposed algo-
rithm is used to analyze transient fields scattered from realistic
airplane and helicopter models under high frequency excitation.

Index Terms—Fast algorithms, marching-on-in-time (MOT),
parallelization, plane-wave time-domain (PWTD) algorithm, time-
domain surface integral equation (TD-SIE), transient scattering,
very large-scale problems.

I. INTRODUCTION

T RANSIENT electromagnetic scattering from complex
objects involving perfect electrically conducting (PEC)

surfaces and piecewise inhomogeneous dielectric volumes can
be analyzed by solving time-domain surface integral equa-
tions (TD-SIEs) [1]. Development of multilevel plane-wave
time-domain (PWTD) algorithm has enabled marching-on-in-
time (MOT) scheme a viable method for efficiently solving
TD-SIEs [2]. The resulting PWTD-accelerated MOT-TD-SIE
solvers have been shown to successfully compete with finite
difference time-domain schemes in analyzing transient fields
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scattered from electrically large (i.e., many wavelengths long)
real-life objects [3], [4].

The PWTD-accelerated MOT-TD-SIE solvers are the time-
domain counterparts of multilevel fast multipole (MLFMA)-
accelerated frequency-domain SIE solvers. Their computa-
tional cost and memory requirement scale as O(NtNs log2 Ns)
and O(N1.5

s ), respectively. Here, Ns is the number of spatial
unknowns and Nt = O(N0.5

s ) is the number of time steps. A
comparison of these scaling estimates to those for the cost and
memory requirements of unaccelerated MOT-TD-SIE solvers,
which scale as O(NtN

2
s ) and O(N2

s ), respectively, demon-
strates the benefits of multilevel PWTD acceleration. Having
said that, the applicability of PWTD-accelerated MOT-TD-
SIE solver in analyzing transient scattering from electrically
large real-life objects can further be increased through effective
parallelization schemes. Unfortunately, parallelizing multilevel
PWTD algorithm on distributed memory clusters is a challeng-
ing task due to its complex nature and heterogeneous structure.
Until recently, similar difficulties prevented efficient and scal-
able parallelization of MLFMA-accelerated frequency-domain
SIE solvers [5].

Previously, schemes, which make use of spatial [6] and
hybrid spatial/angular partitioning [7] strategies to efficiently
parallelize the multilevel PWTD algorithm, were proposed. The
PWTD algorithm with hybrid partitioning was incorporated
into a TD-SIE solver and used for analyzing scattering from
objects discretized with half a million spatial unknowns [7].
Unfortunately, neither of these parallelization schemes scales
well on distributed memory clusters with large numbers of pro-
cessors since their computational and communication costs and
memory requirements per processor are not inversely propor-
tional to the total processor count. This is expected since they
make use of straight-forward time-domain extensions of spa-
tial [8] and hybrid spatial/angular [9] partitioning schemes that
were originally developed for parallelizing the MLFMA and are
known to not scale well. The first provably scalable techniques
for parallelizing the MLFMA did not appear in the archival lit-
erature until 2008 [10]–[14]. These techniques make use of a
hierarchical partitioning strategy that simultaneously leverages
spatial and angular partitioning at each level of the MLFMA
tree [10]–[14].

Unfortunately, the direct extension of these MLFMA par-
allelization strategies to time domain does not produce a
scalable parallel PWTD algorithm. This is simply because of
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the two important differences between MLFMA and PWTD:
1) MLFMAs call for only spatial and angular discretizations,
while PWTD schemes require spatial, angular, and tempo-
ral discretizations. This results in different CPU and memory
requirements for PWTD schemes. More specifically, from a
parallelization perspective, communication costs in the trans-
lation stage of the PWTD schemes scale significantly different
from those of the MLFMAs. 2) MLFMAs often use local (in
angular dimension) schemes to interpolate and filter/anterpolate
far-fields, while PWTD implementations, for reasons relating
to stability of the TD-SIE solvers, usually rely on exact global
(in angular dimension) spherical interpolation/filtering schemes
[4]. Load balancing these global schemes poses challenges,
especially at the coarse PWTD levels involving many plane
wave directions.

These differences between MLFMA and PWTD listed above
clearly motivate the formulation and implementation of a scal-
able scheme to parallelize the multilevel PWTD algorithm. This
paper describes such a scheme that makes use of a hierarchical
parallelization strategy to quasi-optimally distribute compu-
tation and memory loads pertinent to spatial, angular, and
temporal dimensions among processors. In addition, a novel
asynchronous communication technique for reducing the cost
and memory requirements of the communications at the transla-
tion stage of the PWTD algorithm is developed. By combining
the hierarchical partitioning strategy and this asynchronous
communication technique to achieve CPU and memory load
balancing among processors, the proposed scheme produces
scalable communication patterns among processors at all levels
of the PWTD tree. The resulting parallel PWTD algorithm is
incorporated into a TD-SIE solver to enable efficient and accu-
rate analysis of transient scattering from electrically large PEC
objects. Indeed, numerical results demonstrate that the pro-
posed parallel PWTD-accelerated TD-SIE solver can be effi-
ciently applied to real-life electromagnetics problems involving
scatterers spanning over a 100 wavelengths and discretized with
10 million spatial unknowns.

II. FORMULATION

A. TD-SIEs and MOT Scheme

Let S denote an arbitrarily shaped (closed) PEC surface
that resides in free space with permittivity ε0 and perme-
ability μ0. S is excited by the incident electromagnetic field
{Ei(r, t),Hi(r, t)}. Ei(r, t) and Hi(r, t) are assumed essen-
tially bandlimited to maximum frequency fmax and vanish-
ingly small ∀r ∈ S for t < 0. In response to the excitation,
the surface current density J(r, t) is induced on S and J(r, t)
generates the scattered field {Es(r, t),Hs(r, t)}. J(r, t) satis-
fies the time-domain electric field and magnetic field integral
equations (TD-EFIE and TD-MFIE) [15]

n̂× n̂× ∂tE
i(r, t) = −n̂× n̂× ∂tE

s(r, t)

= Le[J](r, t) ∀r ∈ S, S+, S− (1)

n̂× ∂tH
i(r, t) = −n̂× ∂tH

s(r, t)

= Lh[J](r, t) ∀r ∈ S−. (2)

Here, S− and S+ denote surfaces conformal to but just inside
and outside S, n̂ denotes the outward pointing unit normal to
S, and ∂t represents the time derivative. The TD-EFIE and TD-
MFIE operators Le and Lh are

Le[J](r, t) = n̂× n̂× μ0

4π

∫
S

dS′(∂2
t I − c20∇∇) · J(r

′, τ)
R

(3)

Lh[J](r, t) =
1

4π
n̂×

∫
S

dS′(r− r′)

×
[

1

c0R2
∂2
t J(r

′, τ) +
1

R3
∂tJ(r

′, τ)
]

(4)

where I is the identity dyad, R = |r− r′| is the distance
between source point r′ and observer point r, c0 = 1/

√
ε0μ0

is the speed of light in free space, and τ = t−R/c0 denotes
retarded time. The TD-EFIE applies to both open and closed
surfaces [1]. When applied to closed surfaces, solutions to both
the TD-EFIE and TD-MFIE are corrupted by oscillating cur-
rents that (approximately) reside in the null spaces of Le and
Lh [15], [16]. The time domain combined field integral equa-
tion (TD-CFIE) eliminates these spurious currents by linearly
combining the TD-EFIE and TD-MFIE as

n̂× ∂tH
i(r, t)− β/η0n̂× n̂× ∂tE

i(r, t)

= Lh[J](r, t)− β/η0Le[J](r, t)

= Lc[J](r, t) ∀r ∈ S−. (5)

Here, η0 =
√

μ0/ε0 is the wave impedance in free space.
The TD-CFIE reduces to the TD-EFIE and TD-MFIE when
β = ∞ and β = 0, respectively.

To numerically solve (5), J(r, t) is discretized using spa-
tial basis functions Sn(r), n = 1, . . . , Ns, and temporal basis
functions Ti(t), i = 1, . . . , Nt

J(r, t) =

Ns∑
n=1

Sn(r)fn(t) =

Ns∑
n=1

Nt∑
i=1

In,iSn(r)Ti(t). (6)

Here, fn(t) is the temporal signature associated with Sn(r)
and In,i is the expansion coefficient associated with space-
time basis function Sn(r)Ti(t). The temporal basis function
Ti(t) = T (t− iΔt) is a shifted Lagrange interpolant [17] that
is nonzero for t > −Δt; Δt = 1/(2χtfmax) is the time step
size and χt > 1 is the temporal oversampling factor. The spatial
basis functions Sn(r) are Rao–Wilton–Glisson (RWG) func-
tions [18]. Substituting (6) into (5) and testing the resulting
equation with Sm(r), m = 1, . . . , Ns, at t = jΔt yields the set
of linear equations

¯̄Z0Īj = F̄j −
j−1∑
i=1

¯̄ZiĪj−i. (7)

Here, the entries of the vectors Īj and F̄j and the matrices ¯̄Zi

are

{Īj}n = In,j , n = 1, . . . , Ns (8)
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{F̄j}m = 〈Sm(r), n̂× ∂tH
i(r, t)

−β/η0n̂× n̂× ∂tE
i(r, t)

〉∣∣
t=jΔt

, m = 1, . . . , Ns

(9)

{¯̄Zi}mn = 〈Sm(r),Lc[SnT−i](r, t)〉|t=0, m, n=1, . . . , Ns

(10)

where 〈·, ·〉 denotes the standard spatial inner product. The set
of linear equations (7) can be solved by MOT: first, Ī1 is com-
puted by solving (7) for j = 1. Then, for j = 2, the summation
on the right-hand side (RHS) of (7) is computed and resulting
system is solved for Ī2. This process is repeated to compute
Ī3 and so on. At every time step, an iterative solver is used to
efficiently solve (7) for Īj . At a given time step, the computa-
tionally most demanding operation is the evaluation of the sum
on the RHS of (7). This computation requires O(NtN

2
s ) opera-

tions for all Nt time steps and O(N2
s ) memory. Classical MOT

schemes, therefore, are prohibitively expensive when applied to
the analysis of transient scattering from electrically large struc-
tures. The multilevel PWTD algorithm significantly reduces the
computational cost of the MOT scheme [4] and is summarized
next.

B. Multilevel PWTD Algorithm

Consider a rectangular box enclosing S; it is recursively sub-
divided into eight boxes until the dimensions of the smallest
boxes are on the order of the wavelength at the maximum
frequency, λ = c0/fmax. This recursive subdivision strategy
gives rise to an NL-level PWTD tree with levels labeled v =
1, . . . , NL = O

(
log(N0.5

s )
)
. The tree’s finest level (v = 1)

contains the smallest boxes while its coarsest level (v = NL)
contains the box enclosing S. Let Nv

g denote the number of
nonempty boxes at level v. For (nonfractal) surface scatter-
ers N1

g = O(Ns) and Nv+1
g ≈ Nv

g /4. The radius of a sphere
enclosing a level v box is Rv = 2(v−1)R1 with R1 = O(1).

Upon constructing the PWTD tree, far-field box pairs at each
level are identified starting with level NL − 2. Two nonempty
boxes at level v are labeled a level−v far-field pair if the dis-
tance between their centers is greater than γRv (3 ≤ γ ≤ 6)
and their respective parent boxes do not constitute a far-field
pair [2]. Two nonempty boxes at the finest level, which are not
labeled as a far-field pair are considered as a near-field pair; also
each nonempty box at the finest level forms a near-field pair
with itself. Interactions between spatial basis functions resid-
ing in near-field box pairs are computed using (10) and their
contributions are directly added to the RHS of (7). Interactions
between spatial basis functions contained in far-field box pairs
are evaluated by the PWTD scheme.

Let α and α′ denote a far-field box pair’s source and
observer boxes. Let Rc,αα′ = |Rc,αα′ | = |rco − rcs| denote the
distance between the source and observer box centers rcs and
rco. The source and observer boxes contain spatial basis func-
tions Sn(r), n ∈ α, and Sm(r), m ∈ α′, respectively. For
∀n ∈ α, the temporal signature fn(t) associated with Sn(r) is
broken into Nv

l consecutive subsignals, f l
n(t),l = 1, . . . , Nv

l ,
using bandlimited local interpolants [19]. The subsignal f l

n(t)
is bandlimited to fs = χtfmax and has quasi-finite duration

T vΔt ≤ (Rc,αα′ − 2Rv)/c0, with T vNv
l ≈ Nt. Fields due to

Sn(r)f
l
n(t), n ∈ α tested by Sm(r), m ∈ α′ are expressed as〈

Sm(r),Lc[Snf
l
n](r, t)

〉
=

1

8π2c20

Kv∑
q=0

Kv∑
p=−Kv

ωv
qp[−βP−

m(k̂v
qp, t, k̂

v
qp)

+P−
m(k̂v

qp, t, n̂)]
† ∗ T (k̂v

qp, t) ∗P+
n (k̂

v
qp, t, k̂

v
qp) ∗ f l

n(t)

(11)

where Kv = �4πfsχsR
v/c0
+ 1 represents the number of

spherical harmonics effectively accounted for in the plane
wave expansions, χs represents the spherical oversampling fac-
tor, ωv

qp are quadrature weights on the unit sphere k̂v
qp, q =

0, . . . ,Kv and p = −Kv, . . . ,Kv represent directions of out-
going/incoming rays with a total of Nv

k = (Kv + 1)(2Kv + 1)
directions [2], † denotes the transpose, and ∗ represents time
convolution. The projection function P±

{m,n}(k̂
v
qp, t, v̂) is

P±
{m,n}(k̂

v
qp, t, v̂) =

∫
S{m,n}

dS′v̂

× S{m,n}(r′)δ(t± k̂v
qp · (r′−rc{o,s})/c0).

(12)

The translation function T (k̂v
qp, t) is

T (k̂v
qp, t) =

c0∂
3
t

2Rc,αα′

Kv∑
k=0

(2k + 1)Φk

(
c0t

Rc,αα′

)
× Φk

(
k̂v
qp ·Rc,αα′

Rc,αα′

)
(13)

where Φk(·) is the Legendre polynomial of degree k and |t| ≤
Rc,αα′/c0.

The PWTD algorithm is executed as follows. First, outgoing
rays for all directions k̂v

qp are constructed by convolving the

projection function P+
n (k̂

v
qp, t, k̂

v
qp) with the subsignal f l

n(t).

Next, outgoing rays in box α are convolved with T (k̂v
qp, t)

and are translated into incoming rays in box α′. Finally, the
incoming rays are projected onto testing basis function Sm(r)
by convolving the projection function P−

m(k̂v
qp, t, k̂

v
qp) and

P−
m(k̂v

qp, t, n̂) with the incoming rays and summing over all
directions with quadrature weights ωv

qp [2]. Note that only
outgoing/incoming rays of the finest level boxes are con-
structed/projected directly from/onto basis functions using the
projection function (12); those of higher level boxes are con-
structed/projected by an exact global vector spherical filtering
technique described in [4]. The analysis in [4] showed that the
computational cost and memory requirements of a multilevel
PWTD-accelerated MOT scheme applied to surface scatterers
scale as O(NtNs log2 Ns) and O(N1.5

s ), respectively.

C. Parallelization of the PWTD-Accelerated TD-SIE Solver

This section describes a highly scalable scheme for paral-
lelizing the multilevel PWTD algorithm briefly described in the
previous section. The proposed strategy leverages hierarchical
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partitioning of the multilevel PWTD tree among processors and
an asynchronous scheme for memory and cost efficient com-
munications between processors. This asynchronous scheme is
implemented using message passing interface (MPI). In what
follows, first, an overview of the proposed parallelization strat-
egy is provided (Section II-C1). Then, the costs estimates for
computations and communications required at different stages
of the PWTD algorithm are derived (Sections II-C2–II-C4).
Finally, overall computational and communication costs of the
proposed parallelization strategy are provided and its scalability
is theoretically proven (Section II-C5).

1) A Pedestrian Description: The effective parallelization
of the multilevel PWTD scheme calls for a uniform distri-
bution of the near-field MOT matrix elements (i.e., near-field
data) and outgoing/incoming rays (i.e., ray data) and the perti-
nent workload among processors. The near-field data can be
uniformly distributed among processors in a straightforward
manner. That said, distributing the ray data uniformly among
processors is a challenging task due to the PWTD algorithm’s
heterogeneous tree structure. That is, ray data at level v of the
PWTD tree are computed for Nv

g = O(Ns/4
v) boxes (or spa-

tial samples), Nv
k = O(4v) angular samples and approximately

T v = O(2v) temporal samples at each PWTD stage and its par-
titioning along a single dimension results in poor load balance
and/or congested communications at certain levels. This prob-
lem is observed with spatial partitioning at higher levels and
angular or temporal partitioning at lower levels. A viable solu-
tion to this problem is adaptively partitioning ray data along
more than one dimension.

To achieve this, the proposed scheme first identifies a “base”
level vb at which the number of boxes Nvb

g is no less than the
number of processors Np. For simplicity, vb is chosen as the
highest possible such level. It should be noted here that the
proposed partitioning strategy can be easily adopted for other
choices of vb. Then, it uses two different partitioning strategies
for levels v ≤ vb and v > vb.

1) At levels v ≤ vb, each processor computes and stores
the complete ray and near-field data for approximately
Nv

g /Np boxes. Moreover, each processor stores the
geometry information related to spatial basis functions
Sn(r) in its N1

g /Np boxes and their near-field pairs at
level v = 1. By doing so, the memory and computation
loads are only partitioned along the spatial dimension.

2) At levels v > vb, computation and storage of the ray data
of one box are distributed among Nv

r = �Np/N
v
g 
 pro-

cessors. Each processor is in charge of storing Nv
k /N

v
r

angular samples of one box’s ray data, hence the mem-
ory load is simultaneously partitioned along the spatial
and angular dimensions. This memory partitioning leads
to the following workload partitioning: each processor
performs the translation operation for Nv

k /N
v
r angular

samples and all, temporal samples of the ray data of
one box; in contrast, each processor spherically interpo-
lates/filters the ray data for O(T v/Nv

r ) temporal samples
and all angular samples of the ray data of one box. This
approach ensures that computation load is simultane-
ously partitioned along the spatial and angular/temporal
dimensions.

Fig. 1. Partitioning of boxes and their ray data in a five-level PWTD tree among
six processors.

This partitioning strategy is perhaps best described by an
example. Consider a five-level PWTD tree that is partitioned
among six processors (Fig. 1). In Fig. 1, each set of concen-
tric circles represents one box and its associated ray data. The
angular and radial dimensions of the circles concern the angular
and temporal samples of the ray data, respectively. The num-
ber printed near the concentric circles and arcs indicates the ID
of the processor in charge of the data marked with a certain
color. For this example, Nv

g = 9, 6, 3, 2, 1 for v = 1, . . . , 5, and
Np = 6, therefore, vb = 2.

First, the proposed strategy assigns each box at base level
v = vb and with its corresponding subtree(s) to one processor.
Each processor is responsible for computing and storing the ray
data of the source/observer boxes at levels lower than the base
level, i.e., v ≤ vb, which it is in charge of. In the example in
Fig. 1, processor 1 is in charge of computing and storing the
ray data of the leftmost two boxes at the first level and those of
the single leftmost box at the second level. More specifically,
processor 1 constructs/projects the ray data at the second and
first levels by spherical interpolation/filtering of the ray data
at the first and second level. Since the ray data at both lev-
els are stored in processor 1, no interprocessor communication
is needed. Each processor performs the translation stage with-
out interprocessor communications if both source and observer
boxes are handled by the same processor. Otherwise, it car-
ries out the translation operation after receiving the outgoing
ray data from other processors. Similarly, each processor is in
charge of computing and storing the near-field data pertinent to
source boxes at the finest level in its corresponding subtree. For
example, in Fig. 1, processor 1 only computes and stores the
near-field data pertinent to the leftmost two source boxes at the
finest level. This near-field data are related to self and mutual
interactions between the leftmost two source boxes and the
mutual interaction between the second box (source box) and the
third box (observer box) from the left. Note that in this exam-
ple it is assumed that only adjacent (and self) boxes constitute
near-field pairs. Since the near-field data pertinent to many box
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pairs resides on the same processor, the communication cost for
the near-field calculation is very low.

Second, the proposed strategy partitions the ray data of the
boxes at levels higher than the base level, i.e., v > vb, among
processors by considering the number of processors and the
number of boxes at that level. For example, in Fig. 1, the pro-
cessor 1 is responsible for computing and storing 1/2, 1/3, and
1/6 of the ray data (i.e., Nv

r = 2, 3, 6) of the leftmost boxes at
levels 3, 4, and 5, respectively. Translation of the ray data of
one box is split among Nv

r processors in angular dimension.
For example, processor 1 performs translation stage for half
of the angular samples of the ray data of the leftmost box at
level 3 after receiving from processor 6 the outgoing ray data of
the rightmost box at that level. Note that in this example, it is
assumed that, at level 3, only the leftmost and rightmost boxes
constitute a far-field pair. In contrast, interpolating/filtering the
ray data of one box is split among Nv

r processors in temporal
dimension. For example, interpolating/filtering the ray data of
the leftmost box at level 4 is carried out by processor 1, 2, and
3; the ray data are redistributed among these three processors in
temporal dimension, each processor interpolates/filters 1/3 of
the temporal samples of that box.

The proposed strategy gives rise to quasi-optimal (uniform)
distribution of the ray data of boxes at each level of the
PWTD tree as well as the near-field data among processors.
Consequently, the memory requirement of PWTD-accelerated
TD-SIE solver per processor scales as O(N1.5

s /Np). In addi-
tion, this partitioning strategy produces a uniform distribution
of the computation load among processors at each level of
the PWTD tree. However, the sizes of communication packets,
which scale as O(Nv

kT
v/Nv

r ) = O(2vNs/Np), can be rather
large at higher levels. A memory efficient and asynchronous
communication scheme is, therefore, used to alleviate this high
cost helping the proposed partitioning strategy produce scalable
communication patterns. In the following sections, the com-
putational and communication costs per processor at different
stages of the multilevel PWTD algorithm are analyzed in detail.

2) Construction/Projection of Outgoing/Incoming Rays:
The proposed strategy constructs the outgoing rays and projects
the incoming rays separately for the finest level (v = 1) and the
other levels (v > 1). Here, we only detail the procedures for
constructing outgoing rays as those for the incoming rays are
similar.

At level v = 1, construction of outgoing rays proceeds
directly from basis function data and requires no communi-
cation. At this level, construction of one outgoing ray for one
box requires O(T 1) operations. The computation of all ray data
for one box (N1

l outgoing rays for Nv
k directions) requires

O(T 1N1
l N

1
k ) operations. As one processor is in charge of

approximately N1
g /Np v = 1 boxes, the computational cost per

processor for constructing outgoing rays at this level scales as
O(T 1N1

l N
1
kN

1
g /Np) = O(NtNs/Np).

At levels v > 1, construction of outgoing rays is carried
out using spherical interpolation and may require interproces-
sor communication. Unlike the ray data of v = 1 boxes, that
of each v > 1 box may be constructed and stored by more
than one processor (see the example in Fig. 1). Analysis of
the computational and communication costs associated with
the construction of outgoing rays via spherical interpolation

Fig. 2. (a) Three possible cases encountered during the construction of outgo-
ing rays of boxes in PWTD tree. Each case requires different communication
patterns. (b) Steps to construct the outgoing rays in case 3.

at levels v > 1 requires consideration of three distinct cases
[Fig. 2(a)].

1) Case 1: Ray data of level v ≤ vb boxes are directly inter-
polated and shifted from those of the child boxes, which
the same the processor is in charge of. As the spherical
interpolation of one temporal sample of ray data requires
O(Nv

k logKv) operations [4], [20], the computational
cost of this operation scales as O(T vNv

k logKv). This
case requires no communication.

2) Case 2: Ray data of level v = vb + 1 boxes are con-
structed by interpolating and shifting ray data of the
child boxes, which are completely stored on another pro-
cessor. The computational cost of this operation scales
as O(T vNv

k logKv). This case requires communication
among processors following the interpolation step.

3) Case 3: Ray data of level v > vb + 1 boxes are com-
puted via interpolating and shifting the ray data of the
child boxes, which invariably are stored on more than
one processor. The construction of the outgoing rays
[Fig. 2(b)] is performed in four steps. Step 1) Ray data of
the child boxes stored in Nv−1

r processors is exchanged
between them in such a way that each processor han-
dles O(T v/Nv−1

r ) temporal samples of outgoing rays
along all Nv−1

k directions [Fig. 2(b)]. Step 2) each pro-
cessor performs its own spherical interpolation, requiring
O(T vNv

k logKv/Nv−1
r ) operations. Step 3) the interpo-

lated ray data of each child box is split along the angular
dimension and the resulting data is exchanged between
Nv−1

r processors. Step 4) the interpolated ray data are
sent to the processors in charge of the parent box via non-
blocked MPI communication. Step 5) the transferred ray
data are locally shifted to the center of the parent box.

For each processor, the computational cost CC1 of construct-
ing outgoing rays scales as

CC1 = O

(
NtNs

Np

)
+

vb+1∑
v=2

Nv−1
g

Np
Nv

l O (T vNv
k log Kv)

+

NL∑
v=vb+2

Nv
l O

(
T vNv

k logKv

Nv−1
r

)
= O

(
NtNs log

2 Ns

Np

)
.

(14)
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In (14), three contributing terms represent the costs of con-
structing outgoing rays at the finest level, levels 2 < v ≤ vb + 1
(cases 1 and 2), and levels v > vb + 1 (case 3), respectively.
Note that each processor is in charge of (completely or par-
tially) interpolating ray data of approximately Nv−1

g /Np child
boxes for cases 1 and 2, and at most one child box for case 3.

The communication cost per processor is proportional to the
total amount of data that it sends and receives. The cost of com-
munications required at this stage of the PWTD algorithm is
dominated by the data exchange required in case 3 [depicted as
Steps 1), 3), and 4) in Fig. 2(b)]. In Steps 1) and 3), each proces-
sor sends partial ray data of size O(T vNv

k /N
v−1
r ) to Nv−1

r − 1
other processors and receives data of size O(T vNv

k /(N
v−1
r )2)

from each of the other Nv−1
r − 1 processors. Therefore, the

total amount of data that one processor sends/receives in Steps
1) and 3) scales as O(T vNv

k /N
v−1
r ). In Step 4), each proces-

sor sends/receives ray data in the amount of O(T vNv
k /N

v−1
r )

to/from O(1) other processors. Therefore, the communication
cost CM1 in this stage scales as

CM1 =

NL∑
v=vb+2

Nv
l O

(
T vNv

k

Nv−1
r

)
= O

(
NsNt log Np

Np

)
.

(15)

Note that each term in the summation in (15) scales as
O(NsNt/Np) and the total number of terms is NL − vb − 1 =
O(log Np).

The computational cost CC2 associated with projecting
incoming rays onto observers and the cost of communica-
tions required by this operation CM2 are proportional to those
associated with the construction of outgoing rays, i.e.

CC2 ∝ CC1, CM2 ∝ CM1. (16)

3) Translation Stage: Translating one outgoing ray from a
source box onto the incoming ray of an observer box requires
the temporal convolution of the outgoing ray with the trans-
lation function in (13). This convolution is carried out in the
Fourier domain, i.e., by inverse Fourier transforming the prod-
uct of the ray’s and translation function’s Fourier transforms
[2]. The computational cost associated with this operation
scales as O(T v log T v). Note that for a level- v source box
there exist Nv

l outgoing rays along each direction, and that
each observer box interacts with O(1) source boxes. At levels
v ≤ vb, each processor performs translations along Nv

k direc-
tions for its Nv

g /Np observer boxes; at levels v > vb, each
processor performs translations along Nv

k /N
v
r directions for

one single observer box. The computational cost of the trans-
lation operation CC3 for each processor can, therefore, be
estimated as

CC3 =

vb∑
v=1

Nv
g

Np
Nv

l O (1)Nv
kO (T v log T v)

+

NL∑
v=vb+1

Nv
l O (1)

Nv
k

Nv
r

O (T v log T v)

= O

(
NtNs log

2 Ns

Np

)
. (17)

Here, the first and second summations represent costs of
translation operations at levels v ≤ vb and v > vb, respectively.

Note that during the translation stage outgoing ray data of a
box residing in a processor is sent to at most O(1) other proces-
sors. In fact, some translations do not require communications
whatsoever since they involve source and observer boxes resid-
ing on the same processor. For each processor, the amount of
ray data sent and received during the translation stage for one
box scales as O(Nv

kT
v) for levels v ≤ vb and O(Nv

kT
v/Nv

r )
for levels v > vb. Therefore, the communication cost for the
translation stage CM3 scales as

CM3 =

vb∑
v=1

Nv
g

Np
Nv

l O (Nv
kT

v) +

NL∑
v=vb+1

Nv
l O

(
Nv

kT
v

Nv
r

)

= O

(
NtNs log Ns

Np

)
. (18)

Oftentimes, the number of source boxes far-field paired with
one observer box is large (e.g., exceeds one hundred) and the
processor in charge of the observer box needs to allocate tempo-
rary memory for receiving all outgoing rays of source boxes it
is interacting with. This temporary memory space may become
excessively large, especially for translations at higher levels. To
overcome this potential bottleneck, a novel, memory-efficient,
and asynchronous communication scheme is proposed here.
This scheme leverages concepts originally proposed in [21]. It
no longer separates the computation and communication phases
and limits the temporary memory to be allocated to that avail-
able to a single processor. The workflow of this scheme for one
processor can be summarized as follows (Fig. 3). First, the pro-
cessor allocates a “receiving” memory pool containing memory
grains of size O(T vNv

k ) or O(T vNv
k /N

v
r ) to receive outgoing

rays of one source box at level v ≤ vb or v > vb, respectively.
Prior to translation, the processor sends out all/partial outgo-
ing rays of source boxes needed by the far-field observer boxes
that are held by different processors. The processor then iter-
ates over the following four steps until the translation stage is
complete. Step 1) The processor catches arriving data pack-
ets (i.e., outgoing ray data from source boxes). If a memory
grain is available, the processor starts receiving the packet by
putting it into the receiving queue. If not, it temporarily sus-
pends reception of the packet until the next iteration. Step
2) The processor moves any completed packets in the receiv-
ing queue into a working queue, which now contains packets
that are complete for translation. Step 3) The processor car-
ries out the translation of complete outgoing rays. The working
queue is a “priority queue” such that translations associated
with “nonlocal” packets (as opposed to “local” packets that
require no temporary memory space) and “higher level” pack-
ets that correspond to outgoing rays of boxes at higher levels,
are executed first. Step 4) After translation, the memory grain
associated with the packet is returned to the pool and becomes
available again for Step 1). In this manner, the translation and
communication are performed asynchronously and the maxi-
mum amount of temporary memory allocated is fully controlled
by the processor.

4) Near-Field Calculation: Near-field calculations include:
1) matrix–vector multiplications on the left-hand side (LHS)



LIU et al.: SCALABLE PARALLEL PWTD-ACCELERATED SIE SOLVER 669

Fig. 3. Queue-based asynchronous communication during translation stage.

of (7) at each iteration of the solver executed for solving (7)
at all time steps; and 2) partial matrix–vector multiplications
on the RHS of (7). Here, it is assumed that the solution of
(7) requires O(1) iterations, a condition that typically is satis-
fied for nonresonant objects under high-frequency illumination.
Since each box only participates in O(1) near-field pairs,
the near-field computational and communication costs per
box scale as O((Ns/N

1
g )

2) = O(1) and O(Ns/N
1
g ) = O(1),

respectively. As one processor is in charge of approximately
N1

g /Np source boxes at the finest level, the computational cost
and communication cost of the near-field calculations CC4 and
CM4 scale as

CC4 ∝ CM4 =
N1

g

Np
NtO (1) = O

(
NsNt

Np

)
. (19)

5) Total Computational and Communication Costs: By
summing the computational and communication costs in (14)–
(19) and noting that CC4 is bounded by CC{1,2,3} and
CM{1,4} is bounded by CM{2,3}, the total computational
cost and total communication cost of the PWTD-accelerated
TD-SIE solver CM and CC scale as

CC = O

(
NtNs log2 Ns

Np

)
, CM = O

(
NtNs logNs

Np

)
.

(20)

These costs are inversely proportional to the number of
processors Np. As the memory requirements of the solver
O(N1.5

s /Np) are also inversely proportional to Np, it can
be concluded that the proposed parallel PWTD-accelerated
TD-SIE solver is scalable.

III. NUMERICAL RESULTS

This section presents numerical examples that demonstrate
the efficiency, accuracy, and applicability of the proposed par-
allel PWTD-accelerated TD-SIE solver. In all examples con-
sidered here, the scatterers are excited by a plane wave with
electric field given by

Ei(r, t) = p̂G(t− r · k̂/c0). (21)

G(t) = cos(2πf0(t− t0)) exp(−(t− t0)
2/2σ2) is a modu-

lated and quasi-bandlimited Gaussian pulse, f0 is the mod-
ulation frequency, t0 = 6σ is the delay, σ = 3/(2πfbw) is a

measure of pulse duration, and p̂ and k̂ denote the polariza-
tion and propagation direction of the plane wave. The parameter
fbw represents the “half bandwidth” of the pulse. The minimum
and maximum frequencies are fmin = f0 − fbw and fmax =
f0 + fbw; energy outside this frequency band is only 0.0022%
of the pulse’s total energy. A parallel generalized minimal resid-
ual (GMRES) algorithm and a diagonal preconditioner are used
to iteratively solve (7) at each time step. The GMRES iteration
is terminated when the condition

‖V̄j − ¯̄Z0Ī
(n)
j ‖ < ε‖V̄j‖ (22)

is satisfied. Here, Ī(n)j represents the vector of current coeffi-

cients in the nth iteration, V̄j = F̄j −
∑j−1

i=1
¯̄ZiĪj−i is total

RHS at time step j, and ε is the desired residual error. At a given
time step, the GMRES solver’s initial guess is constructed by
extrapolating current coefficients from those obtained in previ-
ous time steps. All frequency-domain (i.e., time harmonic) data
presented in this section are obtained by dividing the Fourier
transform of the time-domain waveforms (whose samples are
recorded during MOT) by that of G(t).

All simulations were executed on a cluster of Quad-Core
850 MHz PowerPC CPUs with 4 GB/CPU memory, which
is located at the King Abdullah University of Science and
Technology (KAUST) Supercomputing Laboratory. The pro-
posed scheme solved either the TD-CFIE (β = 1) or TD-EFIE
leveraging a hybrid MPI and OpenMP parallelization strategy:
one MPI process was launched per CPU and OpenMP utilized
four cores on each CPU to parallelize the computationally most
intensive loops associated with translation, near-field calcula-
tion, and construction/projection of outgoing/incoming rays at
level v = 1.

A. Parallelization Performance and Solution for Canonical
Problems

1) Plate: First, parallelization performance of the PWTD-
accelerated TD-EFIE solver is demonstrated by analyzing
scattering from a 120m × 120m PEC plate. The plate is cen-
tered at the origin and positioned parallel to the xy plane.
It is illuminated by Ei(r, t) in (21) with f0 = 150MHz,
fbw = 50MHz, p̂ = ẑ, and k̂ = ŷ. The current induced on
the plate is discretized using Ns = 731, 247 spatial basis
functions and fourth-order temporal basis function. The sim-
ulation is executed for Nt = 500 time steps with Δt =
250 ps. A nine-level PWTD tree is constructed upon set-
ting the side length of boxes at the finest level to 0.64λ
and γ = 3. The number of boxes at each level is Nv

g =
{65 536, 16 384, 4096, 1024, 256, 64, 16, 4, 1}.

The parallel efficiencies are computed using κ =
NrefTNref

/NpTNp
, where TNref

and TNp
are the measured

execution times (including computation and communication
times) on Nref and Np processors, respectively. Note that
Nref is chosen as the minimum number of processors (usually
greater than one) required to execute the simulation in a reason-
able time. This is a valid measure of the true parallel efficiency
as the efficiency only starts to (noticeably) degrade when
Np becomes very large. κ is computed for different PWTD
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Fig. 4. Parallel efficiencies (κ) of PWTD stages for the canonical problem
involving (a) square PEC plate and (b) PEC sphere while Np is changed from
128 to 2048 (Nref = 128).

stages for Np = {128, 256, 512, 1024, 2048} and Nref = 128
[Fig. 4(a)]. The base level is set to vb = {4, 4, 3, 3, 2}, respec-
tively. As discussed in Section II-C2, three different cases exist
when constructing/projecting outgoing/incoming rays. For case
1, parallel efficiency is 100% since there is no communication
between processors. As expected, the same efficiency cannot
be achieved for cases 2 and 3. However, still, over 96% overall
parallel efficiency is achieved for construction/projection of
outgoing/incoming rays even when Np = 2048. Moreover,
efficiencies of 90% and 91% are achieved for the near-field cal-
culation and the translation stages. Note that lower efficiency
is observed for the near-field calculation stage compared to
the other stages. This is due to nonideal load balancing when
each processor is in charge of different numbers of finest level
boxes, especially if the subtree has many levels. Nevertheless,
the overall solver achieves 94% parallel efficiency (i.e., 15-fold
speedup) when Np = 2048. It is worth pointing out that this
high efficiency may demonstrate the scalability in (20) as it is
difficult to separately measure the computation/communication
time due to extensive usage of nonblocked and asynchronous
communication techniques. Fig. 5(a) plots the execution time
on each processor when Np = 2048; excellent computation
load balance is observed. Moreover, the maximum memory
usages among all processors when Np = 128 and Np = 2048

Fig. 5. Execution time on each processor for the canonical problem involving
(a) square PEC plate and (b) PEC sphere when Np = 2048.

TABLE I
MAXIMUM MEMORY COSTS AMONG ALL PROCESSORS FOR THE

CANONICAL PROBLEM INVOLVING A SQUARE PEC PLATE AND A PEC
SPHERE WHEN Np = 128 AND 2048

are listed in Table I; memory reduction ratios of 14.8 and
14.1 are achieved (compared to the ideal reduction ratio of
16) for the storage of the PWTD ray data and the near-field
data, respectively. Note that lower memory reduction ratio
is observed for the near-field data compared to the PWTD
ray data, due to similar reasons causing the lower parallel
efficiency for the near-field calculation.

The PWTD-accelerated TD-EFIE solver is then applied to
the analysis of scattering from the PEC plate illuminated by
Ei(r, t) in (21) with f0 = 300MHz, fbw = 100MHz, p̂ = −ŷ,
and k̂ = − sin(5◦)x̂− cos(5◦)ẑ. The current induced on the
plate is discretized using Ns = 2, 920, 476 spatial basis func-
tions and fourth-order temporal basis function. The simulation
is executed for Nt = 1000 time steps with Δt = 125 ps. A ten-
level PWTD tree is constructed upon setting the side length of
boxes at the finest level to 0.64λ and γ = 3.5. Table II presents
the solver parameters and CPU and memory requirements of the
solver’s different stages. The solver requires 3.5 TB of memory
and 7 h of CPU time when Np = 2048. The solution at each
time step is obtained in just one GMRES iteration, which yields
ε = 10−12.

The broadband RCS of the plate along the +z direction (θ =
0) obtained using the proposed solver is compared the approx-
imate analytical solution (which only accounts for physical
optics) in Fig. 6; good agreement is observed.

2) Sphere: Next, parallelization performance of the
PWTD-accelerated TD-CFIE solver is demonstrated via
the analysis of scattering from a PEC sphere of radius 1m
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TABLE II
TECHNICAL DATA FOR THE SETUPS AND SOLUTIONS OF SCATTERING

PROBLEMS INVOLVING CANONICAL EXAMPLES

Fig. 6. broadband RCS of the PEC plate along +z direction computed by the
PWTD-accelerated TD-EFIE solver and analytical formula.

centered at the origin. It is illuminated by Ei(r, t) in (21) with
f0 = 2.3GHz, fbw = 0.77GHz, p̂ = x̂, and k̂ = ẑ. The current
induced on the sphere is discretized using Ns = 992, 766
spatial basis functions and fourth-order temporal basis func-
tion. The simulation is executed for Nt = 900 time steps
with Δt = 16.7 ps. A seven-level PWTD tree is constructed
upon setting the side length of boxes at the finest level to
0.479λ and γ = 3.5. The number of boxes at each level is
Nv

g = {18481, 4739, 1160, 272, 56, 8, 1}.
The parallel efficiency κ is computed for different PWTD

stages for Np = {128, 256, 512, 1024, 2048} and Nref = 128
[Fig. 4(b)]. The base level is set to vb = {3, 3, 2, 2, 1}, respec-
tively. Fig. 4(b) shows that there is a higher efficiency degrada-
tion in comparison to efficiency curves presented in Fig. 4(a).
This is due to load imbalance, which is observed because the
number of boxes at each level is not an integer power of
two. For the same reason, the efficiencies decrease in a “stair-
case” fashion and exhibit noticeable local increases whenever
vb is incremented [Fig. 4(b)]. That said, the overall parallel
efficiency is still rather high around 85% (corresponding to
13.6-fold speedup) even when Np = 2048. Fig. 5(b) plots the
execution time on each processor when Np = 2048. For similar

Fig. 7. Magnitudes of the current density induced at (a) (r = 1, θ =
180◦, φ = 0) and (b) (r = 1, θ = 0, φ = 0) on the sphere computed using
the proposed solver and MIE series. Note that the maximum current magnitude
at (b) is 25 times smaller than that at (a).

TABLE III
THE TECHNICAL DATA FOR THE SETUPS AND SOLUTIONS OF

SCATTERING PROBLEMS INVOLVING REAL-LIFE TARGETS

Fig. 8. Broadband RCS of the Rooivalk helicopter along the +z direction
computed by PWTD-accelerated TD-CFIE solver and FD-CFIE solver.
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Fig. 9. Snapshots of the current density (in dB) induced on the helicopter obtained by the PWTD-accelerated TD-CFIE solver at (a) t = 950 Δt, (b) t = 1200 Δt,
and (c) t = 2300 Δt.

reasons as explained above, nonideal computation load bal-
ance is observed in Fig. 5(b) compared with that in Fig. 5(a).
Moreover, the maximum memory usages among all processors
when Np = 128 and Np = 2048 are listed in Table I; memory
reduction ratios of 14.7 and 13.5 are achieved (compared to the
ideal reduction ratio of 16) for the storage of the PWTD ray
data and the near-field data, respectively.

The PWTD-accelerated TD-CFIE solver is then applied to
the analysis of scattering from the PEC sphere illuminated by
Ei(r, t) in (21) with f0 = 7.68 GHz, fbw = 2.56 GHz, p̂ = x̂,
and k̂ = ẑ. The current induced on the sphere is discretized
using Ns = 9, 433, 437 spatial basis functions and fourth-order
temporal basis function. The simulation is executed for Nt =
2, 300 time steps with Δt = 5 ps. A nine-level PWTD tree
is constructed upon setting the side length of boxes at the
finest level to 0.404λ and γ = 4.5. Table II presents the solver
parameters and CPU and memory requirements of the solver’s
different stages. The solver requires 7 TB of memory and 20 h
of CPU time when Np = 8192. The solution at each time step is
obtained in just one GMRES iteration, which yields ε = 10−12.

Current densities induced at (θ= 180◦,φ = 0) and (θ =
0, φ = 0) obtained using the proposed solver are compared with
the exact Mie series solution in Fig. 7.

B. Solution for Real-World Problems

1) Rooivalk Helicopter: The PWTD-accelerated TD-CFIE
solver is applied to the analysis of scattering from a Rooivalk
helicopter model, which fits in a fictitious box of dimensions
7.4m × 22m × 7.1m. The helicopter is illuminated by Ei(r, t)
in (21) with f0 = 1.2GHz, fbw = 0.4GHz, p̂ = ẑ, and k̂ =
ŷ. The current induced on the helicopter is discretized using
Ns = 2, 436, 813 spatial basis functions and fourth-order tem-
poral basis function. The simulation is executed for Nt = 3000
time steps with Δt = 31.25 ps. A ten-level PWTD tree is con-
structed upon setting the side length of boxes at the finest level
to 0.48λ and γ = 4. Table III presents the solver parameters
and CPU and memory requirements of the solver’s different
stages. The solver requires around 2 TB of memory and 21 h
of CPU time when Np = 8192. The solution at each time step
is obtained in maximum three GMRES iterations, which yields
ε = 5× 10−14.

The broadband RCS of the helicopter along the +z direc-
tion (θ = 0) is computed using the proposed solver and a

Fig. 10. Bistatic RCS of the Airbus-A320 airplane at 250MHz computed at
φ = 0◦ and θ = [0, 180]◦ via PWTD-accelerated TD-CFIE solver and FD-
CFIE solver.

frequency-domain combined field integral equation (FD-CFIE)
solver (Fig. 8). Results are in good agreement. Moreover, snap-
shots of the current induced on the helicopter at times 950 Δt,
1200 Δt, and 2300 Δt are shown in Fig. 9. The amplitudes of
currents on edges and regions where multiple reflections exist
are larger than those elsewhere.

2) Airbus-A320: Finally, the PWTD-accelerated PWTD
solver is applied to the analysis of transient scattering from
an Airbus-A320 model, which fits in a hypothetical box with
dimensions 34.2m × 11.7m × 37.5m. The airplane is illumi-
nated by Ei(r, t) in (21) with f0 = 200MHz, fbw = 67.5MHz,
p̂ = ŷ, and k̂ = −ẑ. The current induced on the airplane
is discretized using Ns = 1, 020, 069 spatial basis functions
and fourth-order temporal basis function. The simulation is
executed for Nt = 1600 time steps with Δt = 187 ps. An eight-
level PWTD tree is constructed upon setting the side length of
boxes at the finest level to 0.38 λ and γ = 4.5. Table III presents
the solver parameters and CPU and memory requirements of the
solver’s different stages. The solver requires about 1.2 TB of
memory and 12.6 h of CPU time when Np = 2048. The solu-
tion at each time step is obtained in maximum three GMRES
iterations, which yields ε = 5× 10−15.

The bistatic RCS of the airplane is computed at 250MHz and
compared to those obtained using a FD-CFIE solver (Fig. 10);
results are in good agreement. In addition, snapshots of the
current induced on the airplane at times 640 Δt, 800 Δt, and
1140 Δt are shown in Fig. 11. The maximum current densities
are induced on edges of antennas placed on top of the airplane
and the engine intake.
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Fig. 11. Snapshots of the current density (in dB) induced on the Airbus-A320 obtained by the PWTD-accelerated TD-CFIE solver at (a) t = 640 Δt, (b) t =
800 Δt, and (c) t = 1140 Δt.

IV. CONCLUSION

A scheme for efficiently parallelizing PWTD-accelerated
TD-SIE solvers is presented. Its efficiency is achieved
by hierarchically partitioning the computation and memory
loads along the spatial, angular, and temporal dimensions.
The resulting partitioned memory, CPU, and communica-
tion costs scale as O(N1.5

s /Np), O(NtNs log2 Ns/Np), and
O(NtNs logNs/Np), respectively. Furthermore, to enable
scalable communications among processors, the paralleliza-
tion scheme employs a mix of nonblocked MPI and queue-
based, memory-efficient, and asynchronous communication
techniques. Indeed, numerical results validate the scalability
and parallel efficiency of the proposed scheme up to 2048 pro-
cessors. The resulting PWTD-accelerated TD-SIE solver is suc-
cessfully applied to analysis of transient scattering from objects
measuring well over 100 wavelengths in size and discretized
using 10 million spatial unknowns.
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