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Abstract—A parallel plane-wave time-domain (PWTD)-
accelerated explicit marching-on-in-time (MOT) scheme for
solving the time-domain electric field volume integral equation
(TD-EFVIE) is presented. The proposed scheme leverages pulse
functions and Lagrange polynomials to spatially and temporally
discretize the electric flux density induced throughout the scat-
terers, and a finite-difference scheme to compute the electric
fields from the Hertz electric vector potentials radiated by the
flux density. The flux density is explicitly updated during time
marching by a predictor–corrector (PC) scheme and the vector
potentials are efficiently computed by a scalar PWTD scheme. The
memory requirement and computational complexity of the result-
ing explicit PWTD-PC-EFVIE solver scale as O(Ns log Ns)
and O(NsNt), respectively. Here, Ns is the number of spatial
basis functions and Nt is the number of time steps. A scalable
parallelization of the proposed MOT scheme on distributed-
memory CPU clusters is described. The efficiency, accuracy, and
applicability of the resulting (parallelized) PWTD-PC-EFVIE
solver are demonstrated via its application to the analysis of
transient electromagnetic wave interactions on canonical and
real-life scatterers represented with up to 25 million spatial
discretization elements.
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large-scale problems, plane-wave time-domain algorithm
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I. INTRODUCTION

T RANSIENT analysis of electromagnetic wave interac-
tions on electrically large inhomogeneous dielectric scat-

terers is called for in various applications of engineering and
science ranging from the design of optoelectronic devices and
broadband antenna radomes to the study of (un)intentional radi-
ation effects on human tissue/cells [1], [2]. Among simulators
capable of electromagnetic characterization of such scatter-
ers, time-domain electric field volume integral equation (TD-
EFVIE) solvers are rapidly gaining ground [3]–[7]. The TD-
EFVIE is constructed by enforcing that the total electric field
is equal to the incident electric field plus the scattered electric
field radiated by the electric flux density induced throughout the
scatterer. To numerically solve the TD-EFVIE, the unknown
electric flux density is expanded in terms of spatiotemporal
basis functions. Inserting this expansion into the TD-EFVIE
and testing the resulting equation in space and time yield a set
of linear systems that can be solved for the unknown expansion
coefficients typically by marching-on-in-time (MOT).

The MOT scheme can be implicit or explicit, depending
on the types of the spatiotemporal basis expansion and test-
ing scheme and the size of the time step. The implicit MOT
scheme require at every time step solution of the linear sys-
tem [3], which is traditionally constructed upon expanding
the flux density with Schaubert–Wilton–Glisson (SWG) spa-
tial basis functions [8] and piecewise polynomial temporal
basis functions [9], followed by Galerkin and point testing
in space and time, respectively. In addition, modern implicit
MOT-based solution of time-domain surface and volume inte-
gral equations can be made low- and high-frequency stable
using computationally more expensive space–time discretiza-
tion techniques, such as bandlimited time discretization [7],
[10], space–time Galerkin testing [11], [12], quasi-Helmholtz
decomposition [13], [14], and highly accurate evaluation of
MOT matrix elements [12], [15]–[20]. In contrast, the explicit
MOT scheme usually leverages pulse spatial basis functions
and low-order temporal basis functions and point testing both
in space and time. These “simplifications” render the explicit
MOT scheme computationally more efficient but yet less stable
than its implicit counterpart [21]. This problem has been allevi-
ated by a recently developed explicit MOT-TD-EFVIE solver,
which leverages a predictor–corrector (PC) scheme to “stabi-
lize” updates of the flux density during time marching [22].
Moreover, CPU-parallelized [23] and GPU-accelerated [24]
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implementations are developed to further advance the capabil-
ity of the solver. That said, the applicability of this solver to
the real-life scattering problems is still limited by its high com-
putational complexity, i.e., O(N2

sNt) where Ns is the number
of spatial basis functions and Nt is the number of simulation
time steps. To overcome this bottleneck, fast algorithms such
as multilevel plane-wave time-domain algorithm (PWTD) [25]
and time-domain adaptive integral method (TD-AIM) [26] must
be considered.

In this work, a (parallelized) PWTD-accelerated PC-based
MOT-TD-EFVIE solver is developed. In the past, PWTD has
been successfully used for accelerating the MOT-based solution
of time-domain surface and volume integral equations [4], [5],
[25]. When used in tandem with TD-EFVIE solvers, it reduces
the abovementioned computational complexity to O(NsNt)
[4], [5]. Previously, various PWTD-accelerated implicit MOT-
TD-EFVIE solvers have been developed wherein the PWTD
scheme permits fast computation of scattered electric fields
due to past flux density [4], [5]. However, the explicit MOT-
TD-EFVIE solver computes the scattered electric fields from
vector potentials using a finite-difference scheme. Hence, the
PWTD scheme proposed here, unlike its previously developed
versions, is used for accelerating the computation of the vec-
tor potentials due to the flux density. More specifically, at the
predictor step of the time marching algorithm, the interactions
between far-field box pairs are evaluated by decomposing vec-
tor potentials into their three Cartesian components, which are
propagated independently using a scalar-field PWTD scheme.
Vector potential contribution from near-field boxes is computed
as it is. Then, a finite-difference scheme is applied to the sam-
ples of the vector potential to “predict” the electric fields. At
the corrector step, the electric fields are updated (i.e., corrected)
using a time-dependent averaging factor that improves the accu-
racy while maintaining the stability (as opposed to stabilization
scheme that leverages a constant averaging factor as proposed
in [22]). Furthermore, a scalable CPU-parallelized implementa-
tion of the proposed PWTD-PC-EFVIE solver is also described.
The efficiency and accuracy of the solver are demonstrated via
its application to analysis of transient scattering from canonical
objects represented with up to 25 million spatial discretization
elements. Furthermore, the solver is applied to characterization
of light interaction with a red blood cell aggregation discretized
with 12 million spatial elements.

The rest of the paper is organized as follows. Section II-A
formulates the PC-based MOT scheme for solving the
TD-EFVIE. Section II-B delineates the scalar-field PWTD
algorithm used for accelerating the PC-based MOT scheme.
Section III describes the parallelization of the PWTD-PC-
EFVIE solver on distributed-memory CPU clusters. Numerical
examples, which demonstrate the efficiency, accuracy, and
applicability of the proposed parallelized PWTD-PC-EFVIE
solver, are presented in Section IV, followed by the concluding
remarks in Section V.

II. FORMULATION

A. PC-Based MOT Scheme for TD-EFVIE Solution

Let V denote the support of inhomogeneous dielectric scat-
terers that reside in an unbounded background medium with

permittivity εb. It is assumed that the scatterers are isotropic,
nonmagnetic, nondispersive, and lossless, and have permittiv-
ity ε(r). Let Ei(r, t) denote an incident electric field that is
(essentially) bandlimited to maximum frequency fmax. It is
assumed that Ei(r, t) = 0, ∀r ∈ V for t < 0. Upon excitation
of the scatterers by Ei(r, t), an electric flux density ε(r)E(r, t)
is induced on V . This electric flux density generates a scattered
electric field Es(r, t). Here, E(r, t) is the total electric field.
A TD-EFVIE can be formulated by decomposing E(r, t) into
Ei(r, t) and Es(r, t) as

E(r, t) = Ei(r, t) +Es(r, t)

= Ei(r, t) +∇∇ ·P(r, t)− ∂2
t

c2b
P(r, t). (1)

Here, cb is the speed of light in the background medium, ∂t
denotes time derivative, and P(r, t) represents the Hertz elec-
tric vector potential due to the induced electric flux density and
is expressed as

P(r, t) =

∫
V

dr′
(ε(r′)− εb)E(r′, t−R/cb)

4πεbR
. (2)

Here, R = |r− r′| is the distance between source point r′

and observer point r.
To numerically solve (1), the computation domain is dis-

cretized using cubic elements with edge length Δs. It is
assumed that Δs resolves the minimum wavelength inside the
scatterers and the permittivity inside the nth element is con-
stant, i.e., ε(r) = ε(rn), r ∈ Vn, where rn is the center and Vn

is the support of the nth element. Next, the total electric field
in the scatterers E(r, t) is discretized using spatial basis func-
tions Sn(r), n = 1, . . . , Ns and temporal basis functions Tj(t),
j = 1, . . . , Nt, as

E(r, t) =

Ns∑
n=1

Nt∑
j=1

En,jSn(r)Tj(t). (3)

Here, En,j is the vector expansion coefficient (with three
Cartesian components) associated with the spatiotemporal
basis function Sn(r)Tj(t), Sn(r) is the pulse basis func-
tion defined in the nth cubic element, i.e., Sn(r) = 1, r ∈ Vn,
Tj(t) = T (t− jΔt) is the shifted Lagrange polynomial [9],
and Δt is the time step size defined by a Courant–Friedrichs–
Lewy (CFL)-type condition, as cbΔt ≤ Δs ≤ 2cbΔt. With this
choice of spatiotemporal basis function, the expansion coef-
ficient En,j simply becomes the electric field sampled at the
nth element center and jth time step, i.e., En,j = E(rn, tj) =
E(rn, jΔt). To compute En,j via explicit MOT, (1) is enforced
at space–time samples (rm, ti), m = 1, . . . , Ns, i = 1, . . . , Nt,
and the spatial operator ∇∇· and temporal operator ∂2

t /c
2
b in

(1) are approximated by a finite-difference scheme. Note that
this scheme requires the computation of the vector potential
P(r, t) at times ti−1, ti, ti+1, and at element centers rm, m =
1, . . . , N ′

s. Here, N ′
s = Ns +N b

s and N b
s denotes the num-

ber of elements in the background medium with at least one
adjacent element residing in the scatterers. It should also be
noted here that the element indices are sorted such that the
first Ns elements correspond to those in the scatterers and the
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Fig. 1. H-shaped structure discretized using cubic (source) elements. One
far-field box pair is shown in the figure.

following N b
s elements correspond to those in the background

medium. Upon substituting (3) into (2), the vector potential
sample P(rm, ti), m = 1, . . . , N ′

s is computed as

P(rm, ti) = Ps(rm, ti) +Pc(rm, ti) +Pnc(rm, ti). (4)

The first term Ps(rm, ti) on the right-hand side (RHS) of (4)
is dubbed the “self-term” contribution and is computed by

Ps(rm, ti) = (ε(rm)− εb)βEm,i (5)

β =

∫
Vm

drSm(r)/(4πεb|r− rm|). (6)

Note that β is a constant independent of m and can be
computed analytically [27]. The second/third term Pr(rm, ti),
r ∈ {c, nc} on the RHS of (4) is computed by

Pr(rm, ti) =
∑
n∈rm

∑
j∈Iimn

wnEn,jTj−i(−Rmn/cb)

Rmn
. (7)

Here, wn = Δs3(ε(rn)− εb)/(4πεb), Rmn = |rm − rn|,
Iimn = {i− �Rmn/cbΔt� , . . . , i− �Rmn/cbΔt� − p}, and p
denotes the order of the temporal basis function. Note that
to derive (7), the single-point quadrature rule is used for the
integration in (2). In (7), cm and ncm denote the “causal”
and “noncausal” set of source points for observation point
rm. Specifically, cm = {n : |rm − rn| ≥ 2cbΔt} and the com-
putation of Pc(rm, ti+1) does not require the knowledge of
En,j at time steps j ≥ i. In contrast, ncm = {n : |rm − rn| <
2cbΔt,m 	= n} and the computation of Pnc(rm, ti+1) requires
the knowledge of En,i, which is not yet available. For this
reason, Pc and Pnc represent the “causal” and “noncausal”
contributions, respectively. As an example, an H-shaped struc-
ture is discretized by cubic elements with their element centers
represented by small dots (Fig. 1). Consider an observer ele-
ment m, m resides inside or outside the scatterer if m ≤ Ns or
Ns < m < N ′

s. The self-element and causal/noncausal set of
source elements are shown in Fig. 1. Under the CFL condition,
the size of the noncausal sets is relatively small.

In what follows, the proposed explicit MOT scheme for solv-
ing (1) is elucidated. At each time step i, the electric field
sampled at the mth element center E(rm, ti) is computed by a
predictor–corrector scheme. First, the predictor step estimates
a total electric field throughout the scatterers Epre(rm, ti)
without knowledge of the unknown quantities Ps(rm, ti) and
Pnc(rm, ti+1) by

Epre(rm, ti) = βm{Ei(rm, ti)− δ̃b[Ps](rm, ti)

− δc[Pc](rm, ti)− δb[Pnc](rm, ti)

+ G[Pc +Pnc](rm, ti) + G[Ps](rm, ti−1)}
(8)

where βm = 1/{1 + 2β(ε(rm)− εb)/(c
2
bΔt2)}. Here, δc[·]

and δb[·] are the second-order central and backward differ-
ence approximations of the temporal operator ∂2

t /c
2
b and are

expressed as

δc[f ](ti) = {f(ti+1)− 2f(ti) + f(ti−1)}/(c2bΔt2) (9)

δb[f ](ti) = {2f(ti)− 5f(ti−1)+4f(ti−2)−f(ti−3)}/(c2bΔt2)
(10)

and δ̃b[f ](ti) = δb[f ](ti)− 2f(ti)/(c
2
bΔt2). In (8), G[·] is the

first-order central difference approximation of the spatial oper-
ator ∇∇·, which can be found in the Appendix of [22].

Next, the corrector step uses Epre(rm, ti) to update the self-
term and noncausal potential contributions that, in turn, are
used to correct the total electric field. The predicted self-term
contribution Ppre

s (rm, ti) is now computed using Epre(rm, ti)
instead of Em,i in (5); the predicted noncausal contribution at
time step i+ 1, Ppre

nc (rm, ti+1), is computed using Epre(rn, ti)
instead of En,i in (7) [together with En,j that are computed
at the previous time steps and satisfy the conditions required
by (7)]. It should be re-emphasized here that the computa-
tions of Ppre

s (rm, ti) and Ppre
nc (rm, ti+1) are localized in space

and time since they only require the computation of vector
potential contributions from the field samples at rn satisfying
{n : |rm − rn| < 2cbΔt} for a duration of p time steps. The
electric field E(rm, ti) is then corrected/updated using

E(rm, ti) = βm{Ei(rm, ti)− δ̃b[Ppre
s ](rm, ti)

− ωmiδ
c[Pc +Ppre

nc ](rm, ti)

− (1− ωmi)δ
c[Pc +Pnc](rm, ti−1)

+ ωmiG[Ppre
s +Pc +Ppre

nc ](rm, ti)

+ (1− ωmi)G[Ps +Pc +Pnc](rm, ti−1)}.
(11)

Note that the central difference δc[·] is now applied to both
the causal and noncausal contributions. In (11), ωmi denotes an
averaging factor that stabilizes the corrector step. Throughout
this paper, it is assumed that the incident electric field is a plane
wave propagating in direction k̂. In this case, ωmi is chosen as

ωmi =

⎧⎪⎨
⎪⎩

1, ti < τm + τ1

1 + 1
2 cos

(
π(ti−τm−τ1)

2(τ2−τ1)

)
0.5, ti > τm + τ2

, τm + τ1 ≤ ti ≤ τm + τ2.

(12)
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Here, τm = k̂ · rm/cb and τ2 > τ1 > 0 are parameters
related to the bandwidth of the plane wave. Note that larger
ωmi leads to better accuracy yet worse stability, and ωmi = 1
means that no averaging is applied. This method of selecting
ωmi ensures that it varies smoothly as a function of m and i, and
stabilizes the MOT solution in the “late time”. Once E(rm, ti)
is computed (and stored to be used in the next time steps), the
vector potential contributions Ps(rm, ti) and Pnc(rm, ti+1)
are updated, and the MOT scheme moves to the next time step
i+ 1.

The computational and memory costs of the PC-based MOT
scheme described above depend on those associated with the
computation of the electric fields using the finite differences
in (8)/(11) and computation of the vector potentials using (7).
The former requires only space–time localized operations and
is computationally inexpensive. The latter, in contrast, involves
interactions between N ′

s = O(Ns) observer points and Ns

source points for Nt time steps and requires storage of En,j

at Ns source points for O(Dmax/[cbΔt]) = O(N
1/3
s ) consec-

utive time steps. Here, Dmax is the maximum of any possible
distance between all source and observer points. As a result,
the computational and memory costs of the latter (and the
solver) scale as O(NtN

2
s ) and O(N

4/3
s ), respectively. These

costs are prohibitively high when the solver is applied to the
analysis of transient phenomena involving electrically large
scatterers. Next, a PWTD-accelerated PC-based MOT scheme
that requires only O(NtNs) CPU and O(Ns log Ns) memory
resources is described.

B. PWTD Acceleration

The PWTD algorithm described in this section permits fast
evaluation of the vector potential Pr(rm, ti+1) in (7), rather
than evaluation of the (scattered) electric fields generated by the
flux density as in the PWTD-accelerated implicit MOT-based
TD-EFVIE solvers [4], [5]. In what follows, the PWTD algo-
rithm is briefly summarized while only those details pertinent
to the aforementioned differences are provided.

First, a fictitious box enclosing the N ′
s elements is recur-

sively subdivided into eight smaller boxes until the edge length
of the smallest boxes reaches a prescribed portion of the min-
imum wavelength at the maximum frequency λ = cb/fmax.
An element n is said to reside in a box if its center rn is
located inside that box; empty boxes are immediately discarded.
This procedure constructs a hierarchical tree structure of NL =

O(log [N1/3
s ]) levels. At each level v, v = 1, . . . , NL, and there

exist Nv
g ≈ 8NL−v nonempty boxes. The radius of a sphere

enclosing a level v box is Rv = 2(v−1)R1 with R1 = O(1).
Next, starting from the coarsest level NL, two boxes α and

α′ centered at rcα and rcα′ are termed a far-field pair if 1) the
distance between their centers Rc,αα′ = |Rc,αα′ | = |rcα′ − rcα|
satisfies the condition Rc,αα′ > γRv , (4 ≤ γ ≤ 6), and 2) their
parent boxes do not constitute a far-field pair. Those box pairs at
the finest level v = 1, which do not constitute far-field pairs, are
termed near-field pairs. Also, each box at the finest level forms a
near-field pair with itself. The interactions between elements in
near-field pairs (self-interaction excluded)—henceforth called

near-field calculation—are directly evaluated by (7), while
those between far-field pairs are handled by the PWTD scheme.
When the finest level box size is properly chosen, all non-
causal contribution Pnc(rm, ti+1) and partial causal contribu-
tion Pc(rm, ti+1) are handled by the near-field calculation;
the rest causal contribution Pc(rm, ti+1) is accounted for by
PWTD (see Fig. 1).

Consider a far-field pair α and α′ (Fig. 1), the total elec-
tric field at the nth source element in box α, E(rn, t), is first
represented using an approximate prolate spheroidal (APS)
function TAPS(t) that is bandlimited to fs = χtfmax, where
χt = 1/(2fmaxΔt) is the temporal oversampling factor, and
approximately time-limited to −pfΔt < t < pfΔt, 5 ≤ pf ≤
10 (see [28] regarding more details about the APS function).
This allows splitting E(rn, t) into Nv

l consecutive bandlimited
“subfields” El(rn, t) as

E(rn, t) =

Nv
l∑
l

El(rn, t) =

Nv
l∑
l

lMv∑
j=(l−1)Mv+1

E(rn, tj)T
APS
j (t).

(13)

Here, Nv
l M

v = Nt, Mv is chosen such that the duration
of each subfield T v = (Mv + 2pf )Δt satisfies the condition
T v < (Rc,αα′ − 2Rv)/cb, and TAPS

j (t) = TAPS(t− jΔt) is
the shifted APS function. Next, the potential (causal contribu-
tion) at element center rm due to the lth subfields of all source
elements that reside in box α, Pl

c(rm, t) is computed by

Pl
c(rm, t) =

Kv∑
p=0

Kv∑
q=−Kv

δ
[
t− k̂v

pq · (rm − rcα′)/cb

]

∗G−
l,α′(k̂

v
pq, t) (14)

where

G−
l,α′(k̂

v
pq, t) = T (k̂v

pq, t) ∗G+
l,α(k̂

v
pq, t) (15)

G+
l,α(k̂

v
pq, t) =

∑
n∈α

δ[t+ k̂v
pq · (rn − rcα)/cb] ∗ wnE

l(rn, t).

(16)

Here, ∗ denotes temporal convolution, δ[·] is the Dirac func-
tion, G+

l,α(k̂
v
pq, t) and G−

l,α′(k̂v
pq, t) represent the outgoing ray

in box α and incoming ray in box α′, respectively. k̂v
pq , p =

0, . . . ,Kv , q = −Kv, . . . ,Kv represent directions of the out-
going/incoming rays with a total of Nv

k = (Kv + 1)(2Kv + 1)
directions, and Kv = �4πχsfsR

v/cb�+ 1 is the number of
spherical harmonics with the spherical oversampling factor χs.
In (15), the translation function T (k̂v

pq, t) is

T (k̂v
pq, t) =

−wpq∂t
4πRc,αα′

Kv∑
k=0

(2k + 1)Φk

(
cbt

Rc,αα′

)

× Φk

(
k̂v
pq ·Rc,αα′

Rc,αα′

)
(17)

where Φk(·) is the Legendre polynomial of degree k, wpq

are quadrature weights on the unit sphere [29], and |t| ≤
Rc,αα′/cb.
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The PWTD-accelerated computation of Pl
c(rm, t) in (14)–

(16) is carried out in three stages. First, outgoing rays
G+

l,α(k̂
v
pq, t) associated with box α are constructed by pro-

jecting the subfield El(rn, t), n ∈ α along directions k̂v
pq

using (16). Note that the outgoing ray G+
l,α(k̂

v
pq, t) has three

Cartesian components that can be independently constructed
from the Cartesian components of El(rn, t). Next, the outgoing
rays G+

l,α(k̂
v
pq, t) are translated into incoming rays associated

with box α′, G−
l,α′(k̂v

pq, t), by convolving G+
l,α(k̂

v
pq, t) with

the translation function T (k̂v
pq, t) using (15). Finally, the causal

potential contribution Pl
c(rm, t) is computed by projecting the

incoming rays G−
l,α′(k̂v

pq, t) onto the observer element m and
summing over all directions using (14). Note that in (14)–(16),
Pl

c(rm, t) is computed by decoupling its three Cartesian com-
ponents and evaluating them independently using the scalar-
field PWTD scheme. In practice, only outgoing/incoming rays
of boxes at the finest level are constructed/projected directly
from/onto the elements using (16)/(14), those at higher lev-
els are computed by a scalar spherical interpolation/filtering
scheme described in [30].

The computational and memory costs of the PWTD-
accelerated PC-based TD-EFVIE solver described in this
and previous sections are briefly summarized next. Note
that the analysis in [29] showed that the computational
costs of spherical interpolation/filtering and translation oper-
ations for one ray in one box along all directions scale
as O(T vNv

k log T v). As there exist Nv
l rays and Nv

g

boxes at each level, the overall computational costs of
the spherical interpolation/filtering and translation scale
as
∑NL

v=1 N
v
kN

v
l N

v
g T

v log T v = O(NsNt). Meanwhile, the
computational costs of the construction/projection of outgo-
ing/incoming rays at the finest level, near-field calculation, and
the evaluation of the electric field via finite differences, all scale
as O(NsNt). Therefore, the overall computational cost of the
proposed PWTD-PC-EFVIE solver scales as O(NsNt).

The memory cost of storing one outgoing/incoming ray
in one box along all directions scales as O(T vNv

k ). As
there are O(1) rays in Nv

g boxes at each level that need to
be stored, the memory cost for storing the ray data scales
as
∑NL

v=1 N
v
g T

vNv
kO(1) = O(Ns logNs). On the other hand,

storing the electric fields En,j for evaluation of the near-field
potential contributions in (7) and construction of level-1 out-
going rays in (16) requires only O(Ns) memory. Hence, the
overall memory cost of the PWTD-PC-EFVIE solver scales as
O(Ns log Ns).

III. PARALLELIZATION OF THE PWTD-PC-EFVIE
SOLVER

Despite its attractive computational and memory cost esti-
mates, the PWTD-PC-EFVIE solver described in the previous
section, if implemented for serial execution on single CPU,
still has limited applicability to analysis of electrically large
transient phenomena that oftentimes involve scatterers dis-
cretized using millions of spatial elements. Here, a highly
scalable parallel implementation of the solver for execution

Fig. 2. Partitioning of boxes and their ray data in a five-level PWTD tree among
six processors.

on distributed-memory CPU clusters is described. Note that
the proposed solver has two computation phases at the predic-
tor/corrector step, viz, the computation of vector potentials by
the PWTD algorithm (first phase) and the computation of elec-
tric fields by finite differences (second phase). In what follows,
the parallelization of these phases is expounded.

Efficient parallelization of the potential computation requires
uniform partitioning of the memory and computation work-
loads associated with outgoing/incoming rays (i.e., ray data) in
the PWTD algorithm. However, this task is nontrivial due to
the PWTD algorithm’s heterogeneous tree structure, as at each
level the ray data are computed for Nv

g = O(Ns/8
v) boxes in

spatial dimension, Nv
k = O(4v) samples in angular dimension,

and T v = O(2v) samples in temporal dimension; partitioning
along a single dimension leads to poor load balance at either
higher or lower PWTD tree levels [31]. Therefore, the proposed
partitioning strategy distributes the loads hierarchically in more
than one dimension depending on the number of groups Nv

g

at each level and the number of processors Np. Let vb denote
the highest possible level at which Nv

g ≥ Np. At level v ≤ vb,
each processor stores the ray data for all angular and tempo-
ral samples in approximately Nv

g /Np boxes; at level v > vb,
each processor stores Nv

kN
v
g /Np angular samples and all tem-

poral samples for one box. As an example, consider a five-level
PWTD tree that is partitioned among six processors (Fig. 2). In
Fig. 2, each set of concentric circles represents one box and its
associated ray data. The angular and radial dimensions of the
circles correspond to the angular and temporal samples of the
ray data, respectively. The number shown near the concentric
circles and arcs indicates the ID of the processor in charge of
the data marked with a certain color. For this example, Nv

g =
9, 6, 3, 2, 1 for v = 1, . . . , 5, and Np = 6, hence vb = 2. Each
processor stores the complete ray data in one or two boxes at
level v = 1, 2, and 1/2, 1/3, 1/6 portion of the angular samples
of the ray data in one box at level v = 3, 4, 5. This paralleliza-
tion strategy results in computation and memory load balancing
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and produces scalable communication patterns among proces-
sors at all levels of the PWTD tree via performing an analysis
similar to that in [31]. The computation loads of the PWTD
stages are partitioned as follows.

1) Construction/projection of outgoing/incoming rays at the
finest level: Each processor constructs outgoing rays
using (16) for the source elements in its N1

g /Np boxes;
similarly, it computes the partial causal potential contri-
bution (due to PWTD) by projecting the incoming rays in
(14) onto the observer elements in its N1

g /Np boxes.
2) Construction/projection of outgoing/incoming rays via

spherical interpolation/filtering: At level v ≤ vb, each
processor spherically interpolates/filters the complete ray
data for its Nv

g /Np boxes; at level v > vb, each pro-
cessor spherically interpolates/filters the ray data for
O(T vNv

g /Np) temporal samples and all angular samples
of the ray data of one box. In other words, the main
computation workloads are split along the spatial and
temporal dimensions.

3) Translation: At level v ≤ vb, each processor performs
translation in all directions for the Nv

g /Np observations
boxes it is responsible for; at level v > vb, each proces-
sor carries out translation at Nv

kN
v
g /Np directions for the

observer box it is in charge of. In other words, the com-
putation workloads are distributed along the spatial and
angular dimensions.

4) Near-field calculation: Each processor computes the
noncausal potential contribution Pnc(rm, ti+1) and par-
tial causal potential contribution Pc(rm, ti+1) for the
observer elements in its N1

g /Np boxes.
Next, the parallelization of the second phase is described.

Note that the computation of electric field E(rm, ti) at the mth
observer element in box α by the finite-difference schemes in
(8)/(11) requires the vector potential Pr(r, ti) and Pr(r, ti−1)
at its neighboring elements, which reside in box α and its adja-
cent boxes (Fig. 1). Therefore, the second computation phase
can be easily parallelized using a partitioning strategy similar
to that used in the near-field calculation stage of the PWTD
algorithm: each processor computes the electric fields at the
observer elements in its Nv

g /Np boxes.

IV. NUMERICAL RESULTS

This section presents several numerical examples that
demonstrate the efficiency, accuracy, and applicability of the
proposed parallel PWTD-PC-EFVIE solver. In all examples
considered here, scatterers are excited by a plane wave with
electric field

Ei(r, t) = p̂G(t− r · k̂/cb) (18)

G(t) = cos [2πf0(t− t0)]e
−(t−t0)

2/2σ2

. (19)

Here, p̂ and k̂ are polarization and propagation directions of
the plane wave and G(t) is a Gaussian pulse with central (mod-
ulation) frequency f0, duration σ, and delay t0. An essential
bandwidth is selected as fbw = 3/(2πσ); this choice ensures
that 99.998% of G(t), energy resides within the frequency band
[f0 − fbwf0 + fbw]. Consequently, the maximum frequency of

TABLE I
EXECUTION TIMES AND PARALLEL EFFICIENCIES OF THE PREDICTOR

AND CORRECTOR STEPS

Fig. 3. Parallel efficiencies κ of different PWTD stages applied at the pre-
dictor and corrector steps for the examples involving (a) dielectric cube and
(b) dielectric sphere.

G(t) can essentially be defined as fmax = f0 + fbw. In all
examples, p̂ = x̂, k̂ = ẑ, and t0 = 8σ. Additionally, unless oth-
erwise stated, it is assumed that all scatterers reside in free
space (εb = ε0) and their geometrical centers are at the origin.
All simulations were executed on a 16-rack IBM Blue Gene/P
cluster located at the King Abdullah University of Science
and Technology (KAUST) Supercomputing Laboratory (KSL).
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Fig. 4. Bistatic RCS of the dielectric shell computed at 299.4THz for φ =
0◦ and θ = [0, 180]◦ from the Mie series solution and the time-domain data
generated by the PWTD-PC-EFVIE solver.

ω =
ω

Fig. 5. Broadband RCS of the dielectric shell along +z direction (θ = 0) com-
puted from the Mie series solution and the time-domain data generated by the
PWTD-PC-EFVIE solver.

Each rack contains 1024 quad-core, 32-bit, 850-MHz PowerPC
compute nodes with 4 GB memory and nodes are intercon-
nected by a three-dimensional point-to-point “torus” network.
The PWTD-PC-EFVIE solver leverages a hybrid MPI and
OpenMP parallelization strategy; one MPI process is launched
per CPU and OpenMP uses four cores of each CPU.

A. Parallel Efficiency

This section investigates the parallel efficiencies of the
PWTD-PC-EFVIE solver’s different stages. Here, the paral-
lel efficiency κ is measured as κ = NrefTNref

/NpTNp
, where

TNref
and TNp

are the execution times on Nref and Np pro-
cessors, respectively. Note that Nref is chosen as the minimum
number of processors required to execute a given simulation
in a “reasonable” time. Parallel efficiency investigations are
carried out using two different scatterers as described next.

1) Cube: First, the PWTD-PC-EFVIE solver is applied
to the analysis of transient scattering from a dielectric cube
of edge length 4.7 µm and permittivity ε(r) = 1.5ε0. The
cube is excited by the electric field given in (18) with f0 =
400THz and fmax = 600THz. The cube is discretized into
Ns = 804 357 cubic elements of edge length Δs = 0.05 µm
resulting in Ns = 804 357 source and N ′

s = 857 375 observer

Fig. 6. x̂-components of the electric field scattered from the dielectric shell
computed by the PWTD-PC-EFVIE solver and by inverse Fourier transforming
Mie series solution at points (a) (0, 3 µm, 0), (b) (0, 0, 3 µm), and (c) (0, 0,
−3 µm).

Fig. 7. Bistatic RCS of the two-layer sphere computed at 199.7THz for φ =
0◦ and θ = [0, 180]◦ from the Mie series solution and the time-domain data
generated by the PWTD-PC-EFVIE solver.

points. The simulation is carried out for Nt = 240 time steps
with step size Δt = 0.167 fs and temporal basis function order
p = 1. The averaging factor ωmi is computed by setting τ1 =
1.3t0 and τ2 = 1.5t0 in (12). A six-level PWTD tree is con-
structed upon setting γ = 6 and the edge length of the boxes at
the finest level to 0.294λ.
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Fig. 8. x̂-components of the electric field scattered from the two-layer sphere
computed by the PWTD-PC-EFVIE solver and by inverse Fourier transforming
Mie series solution at points (a) (5.7 µm, 0, 0), (b) (0, 0, 5.7 µm), and (c) (0, 0,
−5.7 µm).

The parallel efficiencies κ and execution times TNref
and

TNp
of the predictor and corrector steps of the PWTD-PC-

EFVIE solver, which are obtained for Nref = 64 and Np =
1024, are listed in Table I. It is clear that the parallel efficiency
and execution time of the predictor step dominate those of the
corrector step. This is simply because the calculation of the
causal potential contribution Pc(rm, ti+1), which is carried out
at this step, is the computationally most dominant operation of
the solver (as discussed in detail in Section II-B). Note that for
this example, an overall efficiency of over 80% is achieved on
Np = 1024 processors. Additionally, the parallel efficiencies κ
of the different PWTD stages applied to the computation of
Pnc(rm, ti+1) and Pc(rm, ti+1) at the predictor and correc-
tor steps are computed for Nref = 64 and Np varied from 64
to 1024. Fig. 3(a) plots overall κ of the PWTD scheme and
those of its four stages vs. Np. Clearly, the parallel efficiency of
the PWTD scheme is dominated by those of the translation and
near-field calculation stages.

2) Sphere: Next, the proposed solver is applied to the anal-
ysis of transient scattering from a dielectric sphere of radius
3 µm and permittivity ε(r) = 1.2ε0. The sphere is excited by
the electric field given in (18) with f0 = 400THz and fmax =
600THz. The sphere is discretized into Ns = 904 089 cubic
elements of edge length Δs = 0.025 µm resulting in Ns =
904 089 source and N ′

s = 973 283 observer points. The sim-
ulation is carried out for Nt = 100 time steps with step size

Fig. 9. Magnitudes of the x̂ -component of the electric field scattered from the
red blood cell aggregation computed by the PWTD-PC-EFVIE solver at points
r1 = (19.3 µm, 4 µm, 7.5 µm) and r2 = (10 µm, 4 µm, 0).

Δt = 0.084 fs and temporal basis function order p = 1. The
averaging factor ωmi is computed by setting τ1 = 1.3t0 and
τ2 = 1.5t0 in (12). A seven-level PWTD tree is constructed
upon setting γ = 6 and the edge length of the boxes at the finest
level to 0.2λ.

The parallel efficiencies κ and execution times of TNref
and

TNp
of the predictor and corrector steps of the PWTD-PC-

EFVIE solver, which are obtained for Nref = 128 and Np =
2048, are listed in Table I. Again, an overall efficiency of over
80% is achieved for the solver. The parallel efficiencies κ of
the PWTD stages applied at the predictor and corrector steps,
which are obtained for Nref = 128 and Np varied from 128 to
2048, are plotted in Fig. 3(b).

B. Canonical Examples

This section demonstrates the accuracy of the PWTD-PC-
EFVIE solver through its application to the computation of
the far and near fields scattered from two canonical examples:
a spherical shell and a two-layer sphere. In both examples,
the radar cross section (RCS) of the scatterers (in frequency
domain) is computed using the discrete Fourier transform of
the time-domain data generated by the solver. In addition, the
x̂-component of the scattered field, Es

x(r, t), is computed at
several positions outside the scatterers. These results are com-
pared with the Mie series solutions to quantify the accuracy of
the solver in computing far and near fields.

1) Shell: First, the proposed solver is applied to the analysis
of scattering from a dielectric shell with inner radius 2.55 µm,
outer radius 2.7 µm, and permittivity ε(r) = 1.21ε0. The shell
is excited by the electric field given in (18) with f0 = 0THz and
fmax = 600THz. The shell is discretized into Ns = 481 906
cubic elements of edge length Δs = 0.03 µm resulting in Ns =
481 906 source and N ′

s = 770 828 observer points. It should be
noted here that for shelled scatterers such as antenna radomes,
the proposed solver requires significantly fewer number of spa-
tial discretization elements as opposed to differential equation
solvers that requires spatial discretization of the entire compu-
tation domain. The simulation is carried out for Nt = 800 time
steps with step size Δt = 0.1 fs and temporal basis function
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Fig. 10. Snapshots of the total electric fields (in dB) induced in the red blood cell aggregation computed by PWTD-PC-EFVIE solver at (a) t = 220Δt, (b) t =
340Δt, and (c) t = 500Δt.

order p = 1. The averaging factor ωmi is computed by setting
τ1 = 3.2t0 and τ2 = 3.5t0 in (12). A six-level PWTD tree is
constructed upon setting γ = 5.5 and the edge length of the
boxes at the finest level to 0.341λ. The simulation is completed
in approximately 4.5 h (wall time) on Np = 1024 processors
using about 250 GB of memory.

The bistatic RCS of the shell at 299.4 THz computed from
the time-domain data generated by the proposed solver is
compared with the Mie series solution in Fig. 4. Excellent
agreement is observed. As expected, the maximum value of
the RCS is achieved along the forward direction (i.e., θ =
0◦). The broadband RCS along the forward direction is com-
puted using the constant averaging factor ωmi = 0.5 and the
time-dependent averaging factor in (12), respectively (Fig. 5).
The accuracy corresponding to high frequency components of
the output data can be dramatically improved by leveraging
the time-dependent averaging factor. Moreover, the scattered
fields Es

x(r, t) are computed at three points [represented as (0,
3 µm, 0), (0, 0, 3 µm) and (0, 0, −3 µm) in Cartesian coor-
dinates] by the proposed solver. These fields are compared to
the inverse Fourier transformed Mie series solutions in Fig. 6.
The results agree well. Note that these fields consist of contri-
butions resulting from refraction, reflection, and diffraction of
electromagnetic waves.

2) Two-Layer Sphere: Next, the proposed solver is applied
to the analysis of scattering from a two-layer sphere with inner
radius 5.25 µm and outer radius 5.4 µm. The permittivities of
the inner and outer layers are ε(r) = 1.02ε0 and ε(r) = 1.08ε0,
respectively. The structure is excited by the electric field in (18)
with f0 = 0THz and fmax = 600THz. The structure is dis-
cretized into Ns = 24 427 317 cubic elements of edge length
Δs = 0.03 µm resulting in Ns = 24 427 317 source and N ′

s =
25 042 247 observer points. The simulation is carried out for
Nt = 1000 time steps with step size Δt = 0.1 fs. The aver-
aging factor ωmi is computed by setting τ1 = 3t0 and τ2 =
3.5t0 in (12). A seven-level PWTD tree is constructed upon
setting γ = 5 and the edge length of the boxes at the finest
level to 0.34λ. The simulation is completed in 15.5 h (wall
time) on Np = 4096 using about 1.6 TB of memory. To the
best of authors’ knowledge, this is the largest problem ever
solved using TD-VIE solvers. Although other state-of-the-art
frequency-domain VIE solvers can handle even larger scatter-
ing problems [32], [33], it is worth noting that the proposed

TD-VIE solver can obtain broadband data in one simulation
as opposed to frequency-domain VIE solvers that require one
simulation per frequency sample.

The bistatic RCS of the two-layer sphere at 199.7 THz com-
puted from the time-domain data generated by the proposed
solver is compared with the Mie series solution in Fig. 7. The
results show good agreement. Fig. 8 plots the scattered fields
Es

x(r, t) computed at (5.7 µm, 0, 0), (0, 0, 5.7 µm), and (0,
0, −5.7 µm) by the proposed solver and by inverse Fourier
transforming the Mie series solution. Again, good agreement
is achieved demonstrating the accuracy of the proposed solver.

C. Real-Life Example: Red Blood Cell Aggregation

Finally, the applicability of the PWTD-PC-EFVIE solver is
demonstrated through its application to the transient analysis of
electromagnetic wave interactions with a red blood cell aggre-
gation. The aggregation consists of eight red blood cells and
fits in a fictitious box with dimensions 18.3 µm × 8.7 µm ×
14.5 µm (Fig. 9). The geometrical details of each cell are
described in [11]. The permittivities of the cells and the back-
ground medium are ε(r) = 1.97ε0 and εb = 1.81ε0, respec-
tively. The aggregation is excited by the electric field given
in (18) with f0 = 400THz and fmax = 600THz. The cells
are discretized into Ns = 11 746 563 cubic elements of edge
length Δs = 0.03 µm resulting in Ns = 11 746 563 source and
N ′

s = 13 775 837 observer points. The simulation is carried out
for Nt = 700 time steps with step size Δt = 0.134 fs and tem-
poral basis function order p = 1. The averaging factor ωmi is
computed by setting τ1 = 1.3t0 and τ2 = 1.6t0 in (12). An
eight-level PWTD tree is constructed upon setting γ = 6 and
the edge length of the boxes at the finest level to 0.375λ. The
simulation is completed in 23.5 h (wall time) on Np = 4096
processors using about 1.2 TB of memory.

Fig. 9 plots the magnitude of the scattered field’s x̂-
component |Es

x(r, t)| computed by the proposed solver
at points (19.3 µm, 4 µm, 7.5 µm) and (10 µm, 4 µm, 0).
Furthermore, Fig. 10 provides the snapshots of the magnitude of
the total electric field E(r, t) induced inside the cells upon exci-
tation (i.e., illumination under light). The snapshots are taken on
the y = 4 µm plane at times 220Δt, 340Δt, and 500Δt. These
results help better understand the diffraction and refraction
phenomena pertinent to light incident on red blood cells.
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V. CONCLUSION

This paper presents a PWTD-accelerated explicit MOT
scheme for solving the TD-EFVIE to analyze transient scat-
tering problems that involve electrically large inhomogeneous
dielectric objects. The proposed scheme leverages simple pulse
and Lagrange polynomials as spatial and temporal basis func-
tions to discretize electric flux density, and employs a finite-
difference scheme to compute electric fields from magnetic
vector potentials. An improved predictor–corrector scheme is
proposed to maintain the stability of the solver. The compu-
tation of the vector potentials are accelerated by a scalar-field
PWTD scheme, which reduces the overall memory and com-
putational cost of the solver from O(N

4/3
s ) and O(NtN

2
s )

to O(Ns logNs) and O(NtNs), respectively. In addition, this
PWTD-PC-EFVIE solver is parallelized on distributed-memory
clusters by employing a hierarchical partitioning strategy that
yields favorable load balance and parallel efficiencies when
the number of processors is large. The parallelized solver is
applied to the analysis of transient scattering from canonical
objects that are discretized using 25 million spatial basis func-
tions, which to the authors’ knowledge, is the largest scattering
problem ever simulated using TD-VIE solvers. In addition, the
proposed solver is applied to the transient electromagnetic char-
acterizations of a red blood cell aggregation that is discretized
using 12 million spatial basis functions.
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