
ST-FNO Fusion

Sparsified Time-Dependent Fourier Neural Operators for Fusion
Simulations

Mustafa Mutiur Rahman,1 Zhe Bai,1 Jacob Robert King,2 Carl R. Sovinec,3 Xishuo Wei,4 Samuel Williams,1 and
Yang Liu1
1)Lawrence Berkeley National Laboratory, Berkeley, CA, 94720
2)Fiat Lux, Lafayette, CO 80026
3)University of Wisconsin-Madison, Madison, WI, 53706
4)University of California, Irvine, CA, 92617

(*Electronic mail: liuyangzhuan@lbl.gov.)

(Dated: 28 October 2024)

This paper presents a sparsified Fourier neural operator for coupled time-dependent partial differential equations (ST-
FNO) as an efficient machine learning surrogate for fluid and particle-based fusion codes such as NIMROD and GTC.
ST-FNO leverages the structures in the governing equations and utilizes neural operators to represent Green’s function-
like numerical operators in the corresponding numerical solvers. Once trained, ST-FNO can rapidly and accurately pre-
dict dynamics in fusion devices compared with first-principle numerical algorithms. In general, ST-FNO represents an
efficient and accurate machine learning surrogate for numerical simulators for multi-variable nonlinear time-dependent
partial differential equations, with the proposed architectures and loss functions. The efficacy of ST-FNO has been
demonstrated using quiescent H-mode simulation data from NIMROD and kink-mode simulation data from GTC. The
ST-FNO H-mode results show orders of magnitude reduction in memory and CPU usage in comparison with the nu-
merical solvers in NIMROD when computing fields over a selected poloidal plane. The ST-FNO kink-mode results
achieve a factor of 2 reduction in the number of parameters compared to baseline FNO models without accuracy loss.

I. INTRODUCTION

Simulation codes are indispensable tools in fusion plasma
confinement research, enabling the study of plasma instabil-
ities, prediction of plasma behaviors, design and control of
fusion devices, and other critical aspects contributing to the
advancement of fusion energy. Mainstream fusion codes use
numerical approximations to solve physical models of vary-
ing fidelity and applicability with respect to temporal and
spatial scales. For example, nonlinear extended magneto-
hydrodynamics (MHD) codes are routinely applied to study
macroscale instability and its consequences in a broad class
of magnetic fusion energy (MFE) devices such as tokamaks,
stellarators, reversed-field pinches, and field-reversed con-
figurations. Among many others, they include codes like
NIMROD,1 M3D-C1,2 and JOREK.3,4 Understanding cross-
field transport due to microscale turbulence in MFE config-
urations requires a description of the kinetic deviations from
a Maxwellian distribution function, due to important effects
at the scale of particle gyroradii. Here, the particle gyro-
averaged kinetic model, gyrokinetics (GK), is solved in both
Eulerian form by codes such as GENE5 and GYRO6 and in
Lagrangian particle-in-cell (PIC) form by codes like GTC 7,8

and XGC9. Despite their success, these "first-principles" fu-
sion codes are computationally demanding for high-fidelity
and whole-device simulation, and each practical run takes
days using thousands of CPUs or GPUs on the leadership su-
percomputers.

Data-driven algorithms, particularly scientific machine
learning (SciML) models for partial differential equations
(PDEs), offer appealing complements and alternatives to the
fusion codes, as they require much less computation and
memory resources to predict an approximate solution once the
models have been trained. Compared to other data-driven al-

gorithms, SciML models incorporate physics knowledge and
principles into the neural network design to reduce model
sizes, improve training time, reduce training samples, and/or
improve model accuracy. SciML models can potentially be
used for fusion research in the following ways: (1) They can
be used for the diagnosis of critical events in the fusion de-
vice by analyzing the snapshots generated by simulation and
experiments. (2) They can be used to quickly predict long-
range dynamics without running the simulation code with
small time step sizes. (3) They can be used to produce ini-
tial guesses and preconditioners for solving linear systems
arising in certain fusion codes. (4) They also allow training
the ML model with one set of initial conditions or physics
models, and testing the model with another set of initial con-
ditions or physics models. Existing SciML models include
physics-informed neural networks (PINN) that encode PDEs
into the loss function10, DeepOnet11, Fourier neural opera-
tors (FNO)12 for operator learning, Gaussian process13,14, and
reduced-order models15,16, to name a few. To date, most
SciML models have been demonstrated in simplified con-
figurations, and very few have been considered for produc-
tion simulation in realistic geometry and with experimental
data17–25. In this paper, we aim at developing new SciML
models for production fusion computations based on the FNO
model.

Inspired by the pseudo-spectral method,26 the FNO model
represents Green’s functions in the spectral domain by non-
linear network operators12. Similar to the dealiased pseudo-
spectral method that zeros out higher-frequency components,
for example see Ref. 27, the FNO model keeps only the
lowest few modes for efficiency and accuracy to achieve su-
perior performance for PDEs with smooth solutions. FNO
has been mainly applied to relatively simple time-dependent
fluid dynamics simulations to predict solutions at future time
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from their past snapshots. We note that the FNO model is
also well-suited for augmenting fusion codes, as many ex-
ploit Fourier transforms for periodic directions. Another con-
sideration is that linearly unstable perturbations often ex-
hibit alignment with the magnetic field, making the Fourier
representation with field-line-following coordinates a com-
pact representation for GK computation. Although FNO is
parameter-efficient, further reducing the model size is critical
for large-scale production fusion simulations, particularly due
to the limited memory capacity of GPU devices. In addition
to the baseline FNO model12, there exist a few FNO vari-
ants including Tensorized FNO (TFNO)28 which leverages
tensor compression of the network parameters, geo-FNO29

that adapts FNO to arbitrary geometry and mesh, factor-
ized FNO30 that simplifies the FNO operations, and physics-
informed FNOs31,32 that improve the model accuracy by in-
corporating PDE-based residuals.

Aside from these improved models, we remark that there
is another largely open opportunity to improve FNO for fu-
sion codes: production codes often solve a coupled system of
equations involving a handful of variables such as tempera-
ture, pressure, magnetic field, current density, flow velocity,
electrostatic and magnetic potentials, etc. One can leverage
the sparse dependencies of these quantities, as indicated by
the governing equations, to further simplify the FNO model
architecture. We exploit this idea in this paper for two chal-
lenging applications of fusion codes that stretch their typical
use. Our extended-MHD application models profile evolution
from edge-driven fluctuations using the two-fluid description
to reproduce electron-fluid dynamics that are not represented
by MHD. Conversely, our GK application models macroscale
evolution including kinetic effects over a relatively long time.

Our contribution is three-fold:

• We bridge the gap between advanced SciML models
with production fusion codes (those that solve multi-
ple equations with large-scale and unstructured mesh).
Our general methodology applies to fusion codes with
linear and nonlinear mode modeling capabilities.

• We propose a parameter-efficient SciML model called
sparsified FNO for coupled time-dependent partial dif-
ferential equations (ST-FNO) that leverages the struc-
ture of the governing equations to simplify the archi-
tecture. ST-FNO can achieve up to 2x parameter reduc-
tion while maintaining similar inference accuracy as the
baseline FNO model.

• We demonstrate the efficiency and accuracy of ST-FNO
with two distinct fusion codes: NIMROD (extended-
MHD) for a simulation of a saturated tokamak edge
perturbation, and GTC (gyrokinetic PIC) for a kink
mode simulation. Compared with the algorithm in
NIMROD, which uses SuperLU_DIST to precondition
the computation-intensive algebraic solves, ST-FNO
can achieve over 100x memory reduction and signifi-
cant speedup for generating approximate field solutions
over a single poloidal plane, once the model has been
trained.

II. METHODOLOGY

We first give a brief introduction of FNO and its building
blocks in Section II A. We then explain in detail how to de-
velop the proposed ST-FNO frameworks for two distinct ex-
amples of fusion simulation codes: NIMROD (Section II B)
and GTC (Section II C) by essentially identifying the inde-
pendent field variables, their governing equations and sparsi-
fying connectivity in FNO. Finally, we present a short remark
on how to develop ST-FNO for other fusion codes and, more
generally, time-dependent PDEs in Section II D.

A. FNO

FNO12 represents, arguably, one of the most successful
machine learning tools for PDE simulations, and has been
demonstrated on a variety of simple and production fluid dy-
namics simulation codes17,31. FNO is an operator learning
framework that represents the discretized Green’s function in
the spectral domain with parameter efficient neural network
components. Suppose one wants to use FNO to predict a set of
nF physical quantities Fs, s = 1, . . . ,nF temporally discretized
at time steps k + 1, . . . ,k + ko from their past values at time
steps k− ki + 1, . . . ,k. Assume that each physical quantity
is spatially discretized into a n1× n2 array. In other words,
the input of FNO for each physical quantity is of dimensions
n1×n2× ki and the output is of dimensions n1×n2× ko.

A typical FNO architecture consists of a lifting operator Pm,
several FNO layers with FNO operator Fm,m and a projection
operator Qm. Here, m denotes the number of input and output
physical quantities of a FNO operator. In our baseline model,
it is assumed that m= nF , and the input and output numbers of
physical quantities are the same. But as will be seen later, our
proposed FNO model builds upon Fmi,mo with mi,mo ≤ nF .
Figs. 1(a) and 1(b) show the baseline FNO models (similar to
the idea of24) for the NIMROD and GTC cases (see Sections
II B and II C for detailed explanation). The lifting operator Pm
pads the input array with the normalized (x,y) spatial coor-
dinates into a n1× n2× (mki + 2) array and lifts the size of
the last dimension to mW via linear transformation (see Fig.
1(c)). W represents the internal width of each field quantity.
Each FNO layer consists of one FNO operator Fm,m (see Fig.
1(d)) that performs fast Fourier transforms (FFT) along the x
and y dimensions and only keeps the lowest M Fourier com-
ponents. These components are passed to a convolution op-
erator R which learns the underlying Green’s function of the
PDE. Afterwards, they are converted back to data of dimen-
sions n1×n2×nW via inverse fast Fourier transforms (IFFT).
In addition, a convolution operator W with kernel size 1 is
also used to regularize the learning process (see Refs. 12 and
24 for more explanation). Finally, the projection operator Pm
converts the data to the output of dimensions n1×n2×ko (see
Fig. 1(c)). In Fm,m and Qm, the GeLU activation function is
used.

Among the operators Pm, Qm and Fm,m, the parameter count
of FNO is dominated by that in Fm,m, each containing roughly
m2W 2M2 parameters. This number is estimated by the fact
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FIG. 1. (a) Baseline-FNO model with ki = 1, ko = 1 for the NIMROD case, “×4” represents 4 Fourier layers Fm,n. (b) Baseline-FNO model
with ko = 1, ko = 1 for the GTC case. (c) Input and output dimensions for the lifting operator Pm and projection operator Qn. (d) Data
dimensions for the Fourier layer Fm,n. (e) Proposed ST-FNO model with ki = 1, ko = 1 for the NIMROD case. (f) The RMS-FC model to
predict the magnitude information for the GTC case. (g) Proposed ST-FNO model with ki = 1, ko = 1 for the GTC case.

that (1) the FNO operator is inspired by the pseudo-spectral
method, which decouples the interactions among Fourier
modes, and (2) the R operator performs convolution along the
mW dimension. Therefore, the parameter count is linear with
respect to the total number of retained Fourier modes M2 and
quadratic with respect to the total internal width mW . It’s
critical to choose the proper value for the internal width W
and the number of Fourier modes M in each spatial coordi-
nate to construct an efficient and effective FNO model. That
said, the black-box way of using FNO for fusion simulation
can still be prohibitively expensive given that (1) production
fusion codes usually have multiple field variables leading to
large parameter counts, and (2) production fusion codes are
expensive to run, which may limit the amount of training data
that can be collected. Therefore, we propose exploiting the
algorithm structure of an existing fusion code to sparsify the
connectivity of the FNO model and, hence, reduce the training
and inference costs.

B. ST-FNO for NIMROD

1. Identification of field quantities and their dependencies

NIMROD1,33 is an extended-MHD code that uses a mixed
spatial discretization of 2D high-order finite-elements and a
spectral Fourier decomposition in the 3rd (periodic) direction.
For toroidal geometries, the finite-element method (FEM) is
applied over the poloidal plane, and Fourier expansion is used
for the toroidal direction. The mixed implicit/semi-implicit
leapfrog time-advance algorithm in NIMROD exploits the
structure of the governing MHD equations. We first discuss
the extended-MHD equations and identify the independent
field quantities and their dependencies in order to design an

FIG. 2. (a) NIMROD training data: coordinate transformation from
the finite-element grid in the R− Z coordinate to the uniform grid
in the r−θ coordinate. (b) GTC training data: data sampled in the
radial-poloidal (ψ −θ ) coordinate can be directly viewed as 2D ar-
rays.

efficient ST-FNO model. In what follows, we assume that
each field quantity F consists of both equilibrium and per-
turbed components F = F0 +δF , but the ST-FNO model only
operates on the perturbed quantities as input and output, and
does not use the equilibrium quantities. Also, we use the no-
tation Fk to denote the perturbed field quantity discretized at
time step k.

We consider an extended-MHD model with separate elec-
tron dynamics and first-order finite-orbit-radius effects that
also include both carbon and deuterium ion species. The
center-of-mass velocity, V, is computed from the momentum
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equation

ρ
∂V
∂ t

+ρ(V ·∇)V = J×B−∇p−∇ ·Π , (1)

where ρ = mdnd +mcnc +mene is the total mass density with
nc, nd and ne being the number densities for the carbon, deu-
terium and electron species, respectively. The pressure is de-
termined by the ideal-gas law, p = kB(neTe + ncTc + ndTd),
with a shared-ion temperature, Tc = Td = Ti. The Π term
is the stress tensor, which represents the traceless contribu-
tions to the pressure tensor and the exact form includes per-
pendicular, parallel and gyro-viscosity as described in prior
work34 with straight-forward modifications for multiple ion
species. The current density, J, is computed with the pre-
Maxwell’s Ampere’s law, J = ∇×B/µ0, as appropriate for
low-frequency MHD dynamics. One of the objectives of this
work is to leverage the variable dependencies of the equations
when constructing the FNO models. However, the center-of-
mass velocity equation depends on all of the evolved vari-
ables: density, velocity, temperature and magnetic field. That
said, our experiments indicate that dropping the dependency
on density in our FNO model doesn’t significantly affect the
model accuracy.

The magnetic field is updated via the induction equation,
which combines Faraday’s law with a generalized Ohm’s law,

∂B
∂ t

= ∇×
[

V×B+
1

nee
(J×B−∇pe−∇ ·Πe)−ηJ

]
.(2)

Thus, the magnetic field is advected by the electron velocity,
ve = V−J/nee. The resistivity, η , is density and temperature
dependent as determined by a Spitzer expression with a multi-
ion electron collision time. A neoclassical current drive is ap-
plied through Πe

35 where neoclassical poloidal flow damp-
ing is also included in the ion stress tensor. The ∇pe and in-
verse electron dependencies are present in the induction equa-
tion. However, the dominant dependency is on the ideal-MHD
center-of-mass velocity advective term, which involves only
velocity and magnetic field.

The density equations for only the ion species are evolved
and the electron density is determined by the quasineutrality
relation, ne = nd +Zcnc. The ion number densities are updated
by the continuity equation,

∂nα

∂ t
+∇·(nαV)=∇·Dnα

∇nα +∇·Dnα ,hypd
1

R2
∂ 2

∂φ 2 ∇nα ,(3)

where α is a species index. The last two terms are numerical
density diffusion terms added for computational practicality.
The last term, a φ -directed hyperdiffusivity, is effective to re-
solve electro-static turbulence which may become prevalent
when using an extended-MHD model36. The density has a
simple dependence on only itself and the velocity.

Finally, the temperature Tα , α = i,e is updated from the
energy equation,

nα

γ−1

(
∂Tα

∂ t
+Vα ·∇Tα

)
=−∇ ·qα − pα ∇ ·Vα , (4)

where pi = kB(nc+nd)Ti and pe = kBneTe are the ion and elec-
tron pressures, respectively. qα is the conductive heat flux that

includes perpendicular, parallel and cross contributions as de-
scribed in prior work34,37 again with straight-forward modi-
fications for multiple ion species. Heating terms are not in-
cluded in this present NIMROD modeling but in principle can
be included in future modeling in a straight-forward manner.
The temperature/energy/pressure equations depend on all of
the variables, density, velocity, temperature and magnetic field
where the magnetic field is important for anisotropic thermal
conduction and electron advection. However, we choose to
drop the dependency of ion temperature on the magnetic field
in our FNO model. Also, we drop the weak dependency on
density in our FNO model.

Overall, the system is composed of 10 evolved field quanti-
ties: 3 for V, 3 for B, 2 for the ion number density nc and nd ,
and 2 for the temperature, Te and Ti, and we use their sparse
dependencies to design the proposed ST-FNO architecture.

2. Network design

In this paper, we focus on a tokamak simulation case where
the inner core region of the poloidal plane is not meshed (see
Fig. 2(a) for the FEM mesh). The dynamics in this region are
not expected to be significant for this particular application.
To prepare training data for the FNO models, we first perform
a coordinate transformation from the R−Z coordinate to the
r−θ coordinate, where r = 0 at the inner boundary and r = 1
at the outer boundary (see Fig. 2(a)). We generate 2D arrays
for each field quantity in a fixed toroidal plane using a struc-
tured grid in the r−θ coordinate. These arrays are evaluated
by evaluating the spectral basis functions of the field data on
the FEM mesh. Let F denote one of the 10 field quantities.
The training data is labeled Fk ∈ Rnr×nθ for each time step k.
Note that for this simulation case, there is no dramatic change
in the magnitude of each field quantity across time steps, but
a significant scale difference exists across different quantities.
To address such a scale difference, we normalize each field
data F by its mean µF = ∑i, j,k Fk(i, j)/(ntnθ nr) and standard
deviation σF as F ← (F−µF)/σF . In this study, the purpose
of the networks is to predict all 10 (unnormalized) field quan-
tities in the φ = 0 poloidal plane at time steps (or snapshots
if the fields are collected very few time steps) k+1, . . . ,k+ko
from their history at time steps (or snapshots) k−ki+1, . . . ,k.

Our baseline FNO model is shown in Fig. 1(a) consisting
of 1 lifting operator P10, 1 projection operator Q10 and 4 FNO
layers F10,10. The parameter count of the baseline FNO model
is dominated by the FNO layers as about 4× 102M2W 2 =
400M2W 2. In comparison, the proposed ST-FNO model is
shown in Fig. 1(e) consisting of lifting and projection oper-
ators in 4 groups, as well as 4 FNO layers each having mul-
tiple FNO operators. Each FNO operator Fm,n corresponds
to one governing equation in Section II B 1 and exploits the
same structure of the MHD equations that is exploited by the
semi-implicit leapfrog algorithm within NIMROD1. Due to
sparser connectivity, the parameter count can be estimated as
4× (8×3+5×2+7×1+4×1+6×3)M2W 2 = 252M2W 2,
which is about 37% smaller than the baseline-FNO model.

We note that the typical Mean Squared Errors (MSE) in ma-
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chine learning community is not a suitable error metric or loss
function for multi-variable fusion simulation data, as it cannot
distinguish the magnitude difference between variables. For
both the baseline and the ST-FNO models, we propose the
following loss function:

lossF =
1

nF |K| ∑k∈K

nF

∑
s=1

√√√√∑
ko
i=1 |F

k+i
s − F̄k+i

s |22
∑

ko
i=1 |F

k+i
s |22

(5)

where F̄s and Fs denote the sth predicted and ground truth field
quantity, and nF = 10. |F |2 denotes the L2 norm of the vector-
ization of the matrix F . K denotes the set of training or testing
snapshot indices, |K|= ntrain for the training error, |K|= ntest
for the test error, and |K| = 1 for the error of each individ-
ual test index. Unlike many other existing loss functions24,
this formula can faithfully represent the average relative dif-
ference between simulation and FNO outputs. Here F̄s and Fs
are the normalized field data, but equation (5) can be used for
unnormalized field data as well.

C. ST-FNO for GTC

1. Identification of field quantities and their dependencies

GTC7 is an advanced particle-in-cell code for simulating
plasma turbulence in fusion reactors capable of modeling ki-
netic electrons, kinetic ions, electromagnetic waves, etc. In
this paper, we consider a GTC-generated dataset for sim-
ulating the internal kink mode in the low frequency, long-
wavelength limit. To develop a ST-FNO architecture lever-
aging the algorithm structure of GTC, we first summarize the
governing equations used to derive the GTC algorithm. To be
consistent with the kink mode dataset, we assume that elec-
trons are treated as fluid, and (thermal) ions are treated as gy-
rokinetic particles38. Our ST-FNO design for GTC, just like
ST-FNO for NIMROD, only operates on perturbed physical
quantities, and we focus on the explanation of the perturbed
quantities in what follows.

The perturbed ion particle distribution function δ fi, or
equivalently ion particle weight w is updated from the Vlasov
equation:

dw
dt = (1−w)[−(v|| δB⊥

B0
+vE) ·∇ln fi0−

µv||b̂0·∇〈〈δB||〉〉
Ti

+ Zi
Ti
(v||E||−vd ·∇(φ + µ

Zi
〈〈δB||〉〉))]. (6)

Here, the perturbed perpendicular magnetic field δB⊥ is com-
puted from the parallel magnetic potential δA|| as δB⊥ =

∇× δA||b̂0. vE = cb̂0×∇φ

B∗0
is the E×B drift velocity with φ

being the electrostatic potential, vd is the sum of the mag-
netic curvature drift current and the magnetic gradient drift
current. The parallel particle velocity v|| and the gyrocenter
R are updated from the equations of motion. After temporal
discretization, one can realize that the distribution function
δ f k+1

i at time step k + 1 only depends on δ f k
i , φ k and Ak

||.
Note that δ fi is a particle quantity in GTC, but our ST-FNO

model only operates on field quantities. Therefore, we use
ion particle density ni, ion flow velocity ui, ion perpendicular
pressure δP⊥i and ion parallel pressure δP||i to approximately
represent δ fi:

ni =
2πB∗0

m

∫
dv||dµδ fi (7)

ui =
2πB∗0

m

∫
dv||dµv||δ fi (8)

δP⊥i =
2πB∗0

m

∫
dv||dµµB∗0δ fi (9)

δP||i =
2πB∗0

m

∫
dv||dµmv2

||δ fi (10)

Although these quantities cannot be directly used in the GTC,
ST-FNO can learn to predict these low-order fluid moments
of e.g., the kink-mode evolution based on the same fluid mo-
ments extracted from GTC results, which effectively provides
closure information for the kinetic system.

The perturbed parallel magnetic potential A|| is updated via
Faraday’s law:

∂A||
∂ t

= b̂0 ·∇(φe f f −φ) (11)

where the effective electrostatic potential φe f f is computed
from the perturbed electron number density δne and the per-
turbed parallel magnetic field δB|| by:

eφe f f

Te
=

δne

n0e
+

δB||
B0
− ∂ lnn0

∂ψ0
δψ− ∂ lnn0

∂α0
δα +

e
Te

∂φeq

∂ψ0
δψ.

(12)
Here, δψ and δα represent the Clebsch representation of
δB⊥, and δB|| can be directly computed from δP⊥i. There-
fore, one can conclude that the parallel magnetic potential at
time step k+1, Ak+1

|| , only depends on Ak
||, φ k, δnk

e and δPk
⊥i.

The perturbed electron number density δne can be updated
by the electron continuity equation:

∂δne

∂ t
=−∇ ·

[
n0eu‖e

(
B0 +δB⊥

B0

)
+nevE −

P‖eb̂0×κ

eB0

− P⊥eb̂0×∇B0

eB2
0

−
P⊥eb̂0×∇δB‖

eB2
0

]
(13)

where ne = n0e + δne, κ = (b̂0 ·∇)b̂0 (field line curvature),
P‖e = Pe0 + δP‖e, P⊥e = Pe0 + δP⊥e. In (13) δue is the per-
turbed electron flow velocity from Ampere’s law 4π

c eneu||e =
∇2
⊥A||+

4π

c Ziniu||i, vE depends on φ , the perturbed diamag-
netic drift velocity v∗ = 1

n0meΩe
b̂0×∇(δP||e+δP⊥e) with per-

turbed pressures δP||e and δP⊥e depending on φe f f and δB⊥.
δB|| depends on δP⊥i. Recall their dependencies explained
above, the perturbed electron number density at time step
k+1, δnk+1

e , only depends on δnk
e, Ak

||, δuk
i , δPk

⊥i and φ k.
In addition to the above-described governing equations and

quantity dependencies, the perturbed electrostatic potential at
time step k+1, φ k+1, can be computed from δnk+1

e and δnk+1
i
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via the Poisson equation:

Z2
i ρ2

i
Ti

∑
s 6=e

n0sms

mi
∇

2
⊥φ =−(1−ρ

2
i ∇

2
⊥)∑

s
Zsn̄s (14)

Overall, we choose 7 independent field quantities δne, δni,
δui, δP⊥i, δP||i, A|| and φ , and use their sparse dependencies
to design the proposed ST-FNO architecture.

2. Network design

In principle, we can apply the same methodology as the
case of NIMROD to design ST-FNO for GTC. Similar to the
ST-FNO for the NIMROD case, here we aim at predicting all
7 field quantities at time steps (or snapshots) k+1, . . . ,k+ ko
from their history at time steps (snapshots) k− ki +1, . . . ,k.

However, there are three significant differences. First, the
NIMROD extended-MHD simulations considered here only
consider fluid dynamics, but GTC is a PIC code that evolves
both field and particle data. As explained in Section II C 1,
we can use ni, ui, δP⊥i and δP||i to describe the lowest-order
moments of the particle distribution data δ fi. Second, unlike
NIMROD whose simulation data in poloidal planes is repre-
sented with FEM mesh, GTC’s simulation data in poloidal
planes is directly sampled on the field-aligned coordinate with
radial flux coordinate ψ and poloidal coordinate θ , leading
to 2D arrays (see Fig. 1(b)) as the training data. Let F =
δne,δni,δui,δP⊥i,δP||i,A||,φ be one of the 7 field quantities
for ST-FNO, F ∈ Rnψ×nθ . In principle, a coordinate transfor-
mation to a field-aligned coordinate could be performed with
the NIMROD data but was not considered in this work. Third,
our GTC dataset is generated from a kink mode simulation
case, which consists of the linear and nonlinear phases. In the
linear phase, several field-quantity magnitudes grow exponen-
tially as time increases while the field patterns remain stable;
in contrast, in the nonlinear phase, the field magnitudes stay
stable, but the field patterns can evolve dramatically. The fol-
lowing design addresses this last challenge efficiently.

To design an efficient network surrogate for the kink mode
simulation, we normalize each field quantity at time step
k, Fk, by its root mean square (RMS) value [Fk] as Fk ←
Fk/[Fk] and use the normalized data to train the ST-FNO
model, as depicted in Fig. 1(g). Compared to the baseline
FNO model in Fig. 1(b), ST-FNO’s sparse connectivity can
significantly reduce the network parameter count. To preserve
the RMS information for both ST-FNO and baseline FNO, we
create a separate network consisting of two fully-connected
(FC) layers called RMS-FC model. When ki = ko = 1, RMS-
FC predicts log[Fk+1] from log[Fk] as shown in Fig. 1(f). We
use the following loss function for RMS-FC:

lossRMS =
1

nF
∑

k∈K

ko

∑
i=1

√
∑

nF
s=1 (log[Fk+i

s ]− log[F̄k+i
s ])2

∑
nF
s=1 (log[Fk+i

s ])2
(15)

with K the same as that in (5).
Our baseline FNO model is shown in Fig. 1(b) consisting

of 1 lifting operator P7, 1 projection operator Q7 and 4 FNO

TABLE I. Comparison of accuracy and parameter counts of the ST-
FNO and the baseline FNO models for the NIMROD case (random
splitting). ki represents the number of past snapshots used as the
model input, and ko represents the number of future snapshots as the
module output.

Model ki ko Train Error Test Error Parameter Count
(10−3) (10−3) (M)

baseline-FNO 1 1 8.76 9.19 92.8
baseline-FNO 3 1 5.61 5.8 92.8
baseline-FNO 5 1 5.65 6.94 92.8

ST-FNO 1 1 7.97 8.7 58.2
ST-FNO 3 1 5.79 6.09 58.2
ST-FNO 5 1 6.13 7.39 58.2

layers F7,7. The parameter count of the baseline FNO model
is dominated by the FNO layers as about 4× 72M2W 2 =
196M2W 2. In comparison, the proposed ST-FNO model is
shown in Fig. 1(g) consisting of 7 lifting and 7 projection
operators, as well as 4 FNO layers each having 7 FNO oper-
ators. Each FNO operator Fm,n corresponds to one governing
equation in Section II C 1, except that those for ni, ui, δP⊥i
and δP||i approximately representing the Vlasov equation (6)
(the connectivity is shown in red). Due to sparser connec-
tivity, the parameter count of ST-FNO can be estimated as
4× (5+ 3+ 3+ 3+ 3+ 4+ 2)M2W 2 = 92M2W 2, which is
significantly smaller than the baseline-FNO model.

For both the baseline and the ST-FNO models, we use the
loss function in (5) with nF = 7. Recall that Fk

s in (5) represent
the normalized perturbed field quantities.

D. A Note on Generalizing ST-FNO to Other Codes

Although in this paper we only demonstrate how to de-
sign ST-FNO for two simulation codes, NIMROD and GTC,
it shall be clear by now that ST-FNO can be easily adapted
to other fusion codes and, more generally, codes solving sys-
tems of time-dependent PDEs. Assume that we have a set of
nF field variables F(x,y) = (F1, . . . ,FnF ) satisfying

∂F
∂ t

= L (F,∇F,∇2F, . . .) (16)

where L is a vector of differential operators involving only
spatial derivatives.

One can identify the dependency of Fs based on the right
hand side of (16) and naturally design a FNO model whose
connectivity respects such dependency. The training data can
be generated using a regular grid in (x,y), regardless of the
numerical algorithms being used, e.g., FEM, finite-difference,
finite-volume, spectral method, etc. If particle-based meth-
ods e.g., PIC, are used, one can convert the particle data to
field data, just like (7)-(10) for GTC. In addition, if the field-
dependency is weak it can be neglected in the FNO connec-
tivity model. Introducing further sparsity into the NIMROD
ST-FNO model may be possible.
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ST-FNO

Baseline-FNO

ST-FNO

Baseline-FNO

ST-FNO

Baseline-FNO

ST-FNO

Baseline-FNO

FIG. 3. Test error using (5) vs. epoch number for ST-FNO and base-
line FNO for the NIMROD case with ki = 1,5 and ko = 1,5.

FIG. 4. Color contour plots of perturbed fields from (top) NIMROD
simulation results, (middle) ST-FNO results and (bottom) their rela-
tive difference using (17) (random splitting) at time step 58400 (snap-
shot k = 233) for 4 out of the total 10 field quantities: VR, BR, nd and
Ti. ki = 1, ko = 1.

FIG. 5. Color contour plots of perturbed fields from the (top) ST-
FNO results and (bottom) their relative difference using (17) (ran-
dom splitting) with respect to the NIMROD simulation results at
time steps 19600,28600,38600,48800,58400 for the field quantity
VR. ki = 1, ko = 1.

III. NUMERICAL RESULTS

In this section, we provide numerical results using two dis-
tinct fusion simulations, an extended-MHD result from NIM-
ROD and a gyrokinetic PIC result from GTC, to demonstrate
the efficiency and accuracy of the proposed ST-FNO method-
ology.

A. NIMROD results

The data set is generated by a nonlinear simulation using
the model described in Sec. II B 1 using the NIMROD code.
This case extends prior work39,40 that studies the quiescent H-
mode regime in the DIII-D tokamak. The 3D tokamak-plasma
volume is discretized with a 96× 256 grid of bi-quartic el-
ements over the poloidal plane and with 22 toroidal Fourier
modes over the toroidal angle. For the FNO application, we
use a set of 257 snapshots from the NIMROD simulation
steps numbered 12000 to 63200 with one FNO snapshot per
200 NIMROD steps. The NIMROD time steps are of size
∆tm = 5×10−9 s, and at this time-step size and resolution, the
compressional Alfvén wave Courant–Friedrichs–Lewy (CFL)
condition is approximately 800 while the flow-speed CFL is
approximately two. Eleven Perlmutter CPU nodes are used,
which requires approximately 7 seconds per step. On a fixed
poloidal plane at φ = 0, we generate 2D data with nr = 64 and
nθ = 64 as data for the ST-FNO model.

For both the baseline-FNO and ST-FNO models, we set the
interior widths W = 20, the number of Fourier modes in each
of r and θ directions M = 12, and the number of FNO lay-
ers to 4. Recall that ntrain and ntest are the number of snap-
shots in the training and test sets, respectively. Here, we con-
sider two ways of splitting the time steps. (1) Random split-
ting: the snapshots are randomly split into the training set with
ntrain = 128 and the test set with ntest = 129. (2) Sequential
splitting: the snapshots are split into two halves, the first ntrain
snapshots as the training set and the rest as the test set. In other
words, we only train the models from data in the past and test
the models with data in the future. We train both models for
500 epochs, i.e., 500 network training passes through the data,
with the training and testing errors defined by (5). The train-
ing is performed on 1 NVIDIA A100 GPU of Perlmutter.

1. Random splitting

We first compare the convergence of the test error as a func-
tion of the epoch number with ki = 1,5 and ko = 1,5 in Fig. 3.
We remark that the convergence of the baseline-FNO and ST-
FNO models are very similar. The training and test errors at
epoch 500 listed in Table I confirm that the two models have
very similar inference accuracy.

Next, we remark that ST-FNO with a parameter count of
67.5 million is more efficient compared to baseline-FNO with
a parameter count of 92.8 million, leading to a 30% model size
reduction (see Table I). It’s worth noting that the FNO param-
eter count is insensitive to ki and ko as the FNO operators dom-
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inate the parameter count instead of the lifting/projection op-
erators. For both models, the training time per epoch is about
3-10s and the inference time per time step is about 5-20ms
using 1 Perlmutter A100 GPU. The memory requirement for
ST-FNO is about 280 MB. In comparison, the approximate so-
lutions in NIMROD are computed with the SuperLU_DIST41

direct solver used to precondition the algebraic solves, which
requires 34 GB memory, 9s factorization time, and 340 ms ap-
ply time (summing up the numbers for all physical quantities)
for each NIMROD toroidal Fourier mode (or equivalently, for
each poloidal plane) using 64 Perlmutter CPU cores. Assum-
ing that the LU factorization and the ST-FNO model can be
reused for multiple time steps and their computational cost
can be amortized, we can just compare the memory require-
ment and inference/apply time. To this end, ST-FNO is ca-
pable of achieving 120x memory reduction compared with
SuperLU_DIST-based solution in predicting an estimate of
the field quantities over a single poloidal plane. If one wants to
use ST-FNO to provide an initial guess for the algebraic solve
at every time step, that requires only 20ms× 44 ≈ 1s. Com-
pared with the 340ms× 22 ≈ 7.5s of SuperLU_DIST-based
preconditioner per Krylov iteration, the ST-FNO-based initial
guess is computationally inexpensive. Note that the factor of
44 indicates that prediction from 44 poloidal planes are re-
quired to resolve the 22 Fourier modes used in NIMROD.
If one wants to get an estimate of the fields every 200 time
steps e.g., to perform long-term diagnostics/prediction, ST-
FNO only takes 1s. In contrast, the first-principle numerical
solver takes 200×7≈ 1400s.

Next, we compare the field plots predicted by ST-FNO and
simulated by NIMROD. Fig. 4 plots the NIMROD simula-
tion results, ST-FNO results, and their relative difference for
4 out of the 10 field quantities at time step 58400. For a NIM-
ROD field quantity Fk and its ST-FNO output F̄k, the relative
difference is computed as:

relative di f f = (Fk− F̄k)/max
i, j
|Fk(i, j)| (17)

Note that ST-FNO can attain 10−2− 10−3 relative difference
for most field quantities. Furthermore, Fig. 5 shows the ST-
FNO results for VR and the relative difference with respect to
the NIMROD results for 5 different time steps (from the test
set), a relative difference of 10−2 can be observed. Notable
dynamics are developed near the edge of the inner core, and
the largest error appears near the magnetic x-point. This point
is a stagnation point of the poloidal magnetic field where field-
lines on the last-closed magnetic-flux surface will asymptot-
ically approach the x-point. This makes this spatial location
unique within the simulated domain and thus exhibits differ-
ing dynamics relative to the rest of the domain.

Next, we examine the inference error per test sample in the
random splitting setting. Fig. 6(a) plots the relative error of
the predicted data F̄k

s = MFNO(Fk−1
s ) for each sample snap-

shot k. Here y = MFNO(x) denotes the ST-FNO model with
input x and output y. In other words, this represents a single
forward pass of the input x through the ST-FNO model. As
the reference, we also plot the relative error for directly using
Fk−1

s as an estimate for Fk
s (dubbed “previous iterate (PI)"),

i.e., F̄k
s = Fk−1

s . As we can see, ST-FNO inference can out-
perform PI by up to 5x more accuracy for most test snapshots.

2. Sequential splitting

In this subsection, we examine the inference error per test
sample in the sequential splitting settings (see Fig. 6(b)),
we set ntrain to different values and try to investigate how
many more snapshots ST-FNO can predict a valuable solu-
tion without retraining the model with newer snapshots. First,
we consider ki = 1 and ko = 1. The FNO prediction is
F̄k

s = MFNO(Fk−1
s ) with ntrain = 130,180,220,240. In other

words, we always predict the next snapshot F̄k
s , using the

model MFNO, with the NIMROD simulation data at previous
snapshot Fk−1

s as the input. Note that for each curve, the ST-
FNO model is trained only once. In comparison, we also plot
results using PI F̄k

s = Fk−1
s . We remark that the ST-FNO pre-

diction can always outperform PI for the first 3-4 snapshots,
then a retraining of the model becomes necessary. Note that
the PI estimate quality drops significantly for snapshot num-
ber k > 250, which justifies the need for ST-FNO prediction
(with more frequent retraining).

In addition, we visualize the fields predicted by ST-FNO
(in the sequential splitting settings with ki = 1 and ko = 1) and
simulated by NIMROD. Fig. 7 plots the NIMROD simulation
results, ST-FNO results, and their relative difference defined
by (17) for the field quantity VR at two time steps. For time
step 48000 (snapshot 181), we consider with ST-FNO model
with ntrain = 130 and ntrain = 180. For time step 56000 (snap-
shot 131), we consider the ST-FNO model with ntrain = 130
and ntrain = 180. It is clear from both Fig. 7 and Fig. 6(b) that
retraining the ST-FNO model with more available snapshot
data can significantly improve the model prediction accuracy.

Next, we consider ki = 5 and ko = 5. In other words, we
try to predict the field at a time scale 5 times larger than
the above experiment. The ST-FNO prediction is F̄k,...,k+4

s =

MFNO(F
k−5,...,k−1
s ) with ntrain = 130,180,220,240 (see Fig.

6(c)). In comparison, we also plot results using PI F̄k
s =

Fk−5
s . Note for snapshot k+ 4, ST-FNO uses all 5 snapshots

k−5, . . . ,k−1, while PI uses only snapshot k−1. Therefore,
ST-FNO can significantly outperform PI for almost all the data
points with ntrain = 180,220,240.

Finally, we consider using ST-FNO in an auto-regressive
fashion. In other words, we want to predict the field F̄k

s
from input quantities that are k0 snapshots back in time:
F̄k

s = MFNO(F̄k−1
s ), F̄k−1

s = MFNO(F̄k−2
s ), . . . , F̄k−k0+1

s =

MFNO(F
k−k0
s ). We trained the ST-FNO model with ki = ko = 1

using ntrain = 130 snapshots, and applied the trained model
with ko varying from 1 to 5. First, the error increases over
time for all curves, just like the other subfigures, in Fig. 6(d).
Note that the “k0 = 1” curve is the same as the “ntrain = 130”
curve in Fig. 6(b). Next, one can clearly see that increasing
k0 will quickly increase the prediction error due to error
accumulation of autoregression. This suggests that both a
proper fine-tuning/retraining of the ST-FNO model over time
and a proper choice of number of autoregression steps are
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(a) (b)

(c) (d)

FIG. 6. Relative error using (5) of the estimated fields F̄k
s for

each test sample in the NIMROD case. Each snapshot k repre-
sents 200 time steps in the NIMROD code, and snapshot 1 repre-
sents time step 12000. (a) Random splitting setting: F̄k

s is com-
puted from ST-FNO F̄k

s = MFNO(Fk−1
s ) with ntrain = 128 and the

previous iterate (PI) F̄k
s = Fk−1

s . ki = ko = 1. (b) Sequential split-
ting setting: F̄k

s is computed from ST-FNO F̄k
s = MFNO(Fk−1

s )
with ntrain = 130,180,220,240 and PI F̄k

s = Fk−1
s . ki = ko = 1.

(c) Sequential splitting setting: Same as (b) but with ki = ko = 5.
In other words, F̄k,...,k+4

s = MFNO(F
k−5,...,k−1
s ). (d) Sequential

splitting setting: The ST-FNO operates in an auto-regressive fash-
ion to predict snapshot k from Fk−k0

s : F̄k
s = MFNO(F̄k−1

s ), F̄k−1
s =

MFNO(F̄k−2
s ), . . . , F̄k−k0+1

s = MFNO(F
k−k0
s ).

needed.

FIG. 7. Color contour plots of perturbed fields from (top) ST-FNO
results and (bottom) their relative difference using (17) with respect
to the NIMROD simulation results (sequential splitting) at time steps
48000,56000 with different sized training data for the field quantity
VR. ki = 1, ko = 1.

B. GTC results

The data set is generated by a nonlinear gyrokinetic simula-
tion using GTC for the DIII-D discharge #141216 at t = 1750

ST-FNO

Baseline-FNO

ST-FNO

Baseline-FNO

ST-FNO

Baseline-FNO

ST-FNO

Baseline-FNO

FIG. 8. Test error using (5) for the normalized field data vs. epoch
number for ST-FNO and baseline FNO for the GTC case with ki =
1,5 and ko = 1,5.

TABLE II. Comparison of accuracy and parameter counts of the ST-
FNO and the baseline FNO models for the GTC case (random split-
ting). ki represents the number of past snapshots used as the model
input, and ko represents the number of future snapshots as the module
output.

Model ki ko Train Error Test Error Parameter Count
(10−3) (10−2) (M)

baseline-FNO 1 1 9.96 1.78 45.4
baseline-FNO 3 1 9.51 1.77 45.4
baseline-FNO 5 1 8.23 1.79 45.4

ST-FNO 1 1 10.8 1.77 21.2
ST-FNO 3 1 7.93 1.81 21.2
ST-FNO 5 1 7.95 1.85 21.2

FIG. 9. Color contour plots of perturbed fields from (top) GTC sim-
ulation results, (middle) ST-FNO results and (bottom) their relative
difference using (17) (random splitting) at time step 16000 for 4 out
of the total 7 field quantities: φ , A||, ui and ne. ki = 1, ko = 1.
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FIG. 10. Color contour plots of perturbed fields from the (top) ST-
FNO results and (bottom) their relative difference using (17) with
respect to the GTC simulation results (random splitting) at time steps
7500,10000,12500,15000,17500 for the field quantity A||. ki = 1,
ko = 1.

ms. The DIII-D tokamak geometry is discretized with a
100× 250× 24 mesh in radial, poloidal, and parallel direc-
tions; the time step size is set to ∆t = 1.483× 10−8s. We
run the simulation for 20000 time steps and keep both n = 0
and n = 1 modes in the simulation. This simulation requires
3.9 hours on 6 Perlmutter GPU nodes. The simulation gener-
ates one snapshot per 100 time steps, and we use time steps
4000 to 18800 as the dataset for training and testing ST-FNO.
This is due to the fact that the first 3999 time steps consist of
significant initial noises, and the last 200 time steps become
physically unreliable due to numerical instabilities. Note that
there is a transition point near time step 15300 (snapshot num-
ber k = 114) that separates the linear phase and nonlinear kink
mode phase.

For both the baseline-FNO and ST-FNO models, we set the
interior widths W = 20, the number of Fourier modes in each
direction M = 12, and the number of FNO layers to 4. Here,
we consider two ways of splitting the time steps. (1) Random
splitting: the snapshots are randomly split into the training set
with ntrain = 74 and the test set with ntest = 75. (2) Sequential
splitting: the snapshots are split into two halves, the first ntrain
snapshots as the training set and the rest as the test set. In other
words, we only train the models from data in the past and test
the models with data in the future. We train the models for
500 epochs with the errors defined by (5) for the ST-FNO and
baseline-FNO model and (15) for the RMS-FC model. The
training and testing are performed with 1 NVIDIA A100 GPU
of Perlmutter.

1. Random splitting

We first compare the convergence of the test error in the
random splitting setting as a function of the epoch number
with ki = 1,5 and ko = 1,5 in Fig. 8. We remark that the con-
vergence of the baseline-FNO and ST-FNO models are very
similar. The training and test errors at epoch 500 listed in Ta-
ble II confirm that the two models have very similar inference
accuracy. Next, we remark that ST-FNO with a parameter
count of 21.2 million is more efficient compared to baseline-
FNO with a parameter count of 45.4 million, leading to a 2X

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 11. Relative error using (5) of the estimated fields F̄k
s for each

test sample in the GTC case with ki = ko = 1. Each snapshot k rep-
resents 100 time steps in the GTC code, and snapshot 1 represents
time step 4000. The vertical dashed line represents the linear-to-
nonlinear transition point at time step 15300 (i.e., snapshot k = 114).
Left (random splitting setting): ntrain = 74 and the previous iter-
ate (PI) [F̄k

s ]F̄
k
s = [Fk−1

s ]Fk−1
s . Right (sequential splitting setting):

ntrain = 80,100,110,120,130 and PI results. Top: Relative error of
the RMS values using (15) for (a) random splitting and (d) sequential
splitting. The quantities are computed as [F̄k

s ] = MRMS([Fk−1
s ]) with

MRMS denoting the RMS-FC model. Middle: Relative error using (5)
for normalized fields for (b) random splitting and (e) sequential split-
ting. The quantities are computed as F̄k

s = MFNO(Fk−1
s ) with MFNO

denoting the ST-FNO model. Bottom: Relative error using (5) for
fields de-normalized with the RMS data as [F̄k

s ]F̄
k
s for (c) random

splitting and (f) sequential splitting.

model size reduction (see Table II). For ST-FNO models, the
training time per epoch is about 6.78 s and the inference time
per snapshot (i.e., per 100 time steps) is about 2.00 ms. In
comparison, the average time per time step in GTC is about
0.7s.

Next, we compare the field plots predicted by ST-FNO and
simulated by GTC in the random splitting setting. Fig. 9
plots the GTC simulation results, ST-FNO results, and their
relative difference for 4 field quantities at time step 16000.
Note that these plots show the combination of the ST-FNO re-
sults and the RMS-FC results. Note that ST-FNO can attain
10−2− 10−3 relative difference for all field quantities. Fur-
thermore, Fig. 10 shows the ST-FNO results for A|| and the
relative difference with respect to the GTC results for 5 dif-
ferent time steps (from the test set), a relative difference of
10−2−10−3 can be observed. Note that these time steps cover
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both the linear and nonlinear phases. The RMS values range
from 10−5−100 and the kink mode exhibits dramatic pattern
changes, but our model can still predict very well.

Next, we examine the inference error per test sample in
the random splitting settings. Fig. 11(left) plots the relative
error of the normalized data, RMS, and the de-normalized
data. Roughly speaking, let [F̄ ] = [F ](1+εRMS) be the model-
generated RMS data and F̄ = F(1 + εnorm) be the model-
generated normalized field data. In the random splitting set-
ting (left column), the RMS values can be very computed
as [F̄k

s ] = MRMS([Fk−1
s ]) with MRMS denoting the RMS-FC

model. The inference errors are εRMS ≈ 10−4− 10−2 given
the presence of both linear and nonlinear phase data in the
training set (see Fig. 11(a)). Similarly, the normalized field
data can be accurately computed as F̄k

s = MFNO(Fk−1
s ) with

at least |εnorm| ≈ 6× 10−2 error (see Fig. 11(b)). The de-
normalized field [F̄ ]F̄ ≈ [F ]F(1 + εRMS + |εnorm|) shows a
inference error about 6× 10−2 (see Fig. 11(c)). Note that
for both the RMS and the field data, the inference error is
larger towards snapshots 4000 and 18800 due to the presence
of more out-of-distribution data in these regions. In com-
parison, we also show the PI results for the de-normalized
fields: [F̄k

s ]F̄
k
s = [Fk−1

s ]Fk−1
s in Fig. 11(c). The proposed

ST-FNO+RMS-FC model can yield up to 5x better inference
accuracy compared with PI, but in the nonlinear phase their
difference becomes less significant.

FIG. 12. Color contour plots of perturbed fields from (top) ST-FNO
results and (bottom) their relative difference using (17) with respect
to the GTC simulation results (sequential splitting) at time steps
14000,17000 with different sized training data for the field quantity
A||. ki = 1, ko = 1.

2. Sequential splitting

Finally, we examine the prediction error per test sample in
the sequential splitting settings (see Fig. 11(right column)).
We set ntrain to different values and try to investigate how
many more snapshots ST-FNO can predict a valuable solution
(e.g. with the error below approximately 0.1) without retrain-
ing the model with newer snapshots. As expected, the errors
go up as the snapshot index increases. That said, for RMS
(Fig. 11(d)), one can accurately predict the results in the linear
phase for the next 30-40 snapshots with only ntrain = 80 train-

ing samples. For the normalized data (Fig. 11(e)) and denor-
malized data (Fig. 11(f)), the linear phase can be accurately
predicted with ntrain = 80,100,110. However, in the nonlinear
phase, the ST-FNO can only predict the next snapshot more
accurately than PI, suggesting that retraining is needed for ev-
ery snapshot.

In addition, we visualize the fields predicted by ST-FNO
(in the sequential splitting settings with ki = 1 and ko = 1) and
simulated by GTC. Fig. 12 plots the GTC simulation results,
ST-FNO results, and their relative difference defined by (17)
for the field quantity A|| at two time steps. For time step 14000
(snapshot 101), we consider the ST-FNO model with ntrain =
80 and ntrain = 101. For time step 17000 (snapshot 131), we
consider the ST-FNO model with ntrain = 120 and ntrain = 130.
It is clear from both Fig. 12 and Fig. 11(f) that retraining the
ST-FNO model becomes necessary in the sequential splitting
setting.

CONCLUSION

This paper proposed an efficient and accurate SciML
model, called ST-FNO, which leverages the sparse connec-
tivity indicated by the governing equations of fusion codes.
ST-FNO has been applied to an extended-MHD code NIM-
ROD and a gyrokinetic PIC code GTC to demonstrate its in-
ference accuracy, memory efficiency and CPU efficiency. We
remark that for fusion simulation codes, or more generally
multi-variable time-dependent PDEs with multiple variables,
explicitly exploiting the sparsity dependency indicated by the
governing equations can effectively reduce the sizes of SciML
models without sacrificing the interference accuracy, which is
particularly useful for data-scarce scientific applications.

The limitation of ST-FNO is the expensive training cost
(just like most other ML models), and we plan to explore the
idea of fine-tuning32 as well as further increasing the number
of time steps per snapshot to reduce such cost. It is also likely
that one can further sparsify ST-FNO by dropping weaker de-
pendencies using more domain knowledge. A more system-
atic study of the prediction confidence, particularly for a large
number of output time steps, is highly desirable for ST-FNO
to be used as a reliable diagnostic tool for critical plasma
events. Future work also includes integrating ST-FNO into
fusion codes as an ML-based initial high-accuracy guess for
preconditioners. Taking NIMROD for an example, this would
require (1) conversion of the model output from uniform mesh
in r−θ coordinate to the FEM mesh, (2) extension of the ST-
FNO model to predict fully 3D data in the complex Fourier
representation used by NIMROD, and (3) an automatic mech-
anism to determine when to retrain or fine-tune the ST-FNO
model on-the-fly.
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