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Abstract. This paper presents a multilevel tensor compression algorithm called tensor butterfly6
algorithm for efficiently representing large-scale and high-dimensional oscillatory integral operators,7
including Green’s functions for wave equations and integral transforms such as Radon transforms8
and Fourier transforms. The proposed algorithm leverages a tensor extension of the so-called com-9
plementary low-rank property of existing matrix butterfly algorithms. The algorithm partitions the10
discretized integral operator tensor into subtensors of multiple levels, and factorizes each subtensor11
at the middle level as a Tucker-type interpolative decomposition, whose factor matrices are formed in12
a multilevel fashion. For a d-dimensional (d > 1) integral operator discretized into a 2d-mode tensor13
with n2d entries, the overall CPU time and memory requirement scale as O(nd), in stark contrast14
to the O(nd logn) complexity of existing matrix algorithms such as matrix butterfly algorithms and15
fast Fourier transforms (FFT), where n is the number of points per direction. When comparing with16
other tensor algorithms such as quantized tensor train (QTT), the proposed algorithm also shows17
superior CPU and memory performance for tensor contraction. Remarkably, the tensor butterfly18
algorithm can efficiently model high-frequency Green’s function interactions between two unit cubes,19
each spanning 512 wavelengths per direction, which represent problems of scale over 512× larger20
than that existing butterfly algorithms can handle, with the same amount of computation resources.21
On the other hand, for a problem representing 64 wavelengths per direction, which is the largest size22
existing algorithms can handle, our tensor butterfly algorithm exhibits 200x speedups and 30× mem-23
ory reduction comparing with existing ones. Moreover, the tensor butterfly algorithm also permits24
O(nd)-complexity FFTs and Radon transforms up to d = 6 dimensions.25
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1. Introduction. Oscillatory integral operators (OIOs), such as Fourier trans-31

forms and Fourier integral operators [32, 7], are critical computational and theoretical32

tools for many scientific and engineering applications, such as signal and image pro-33

cessing, inverse problems and imaging, computer vision, quantum mechanics, and34

analyzing and solving partial differential equations (PDEs). The development of ac-35

curate and efficient algorithms for computing OIOs has profound impacts on the36

evolution of the pertinent research areas including, perhaps mostly remarkably, the37

invention of the fast Fourier transform (FFT) by Cooley and Tukey in 1965 and the38

invention of the fast multipole method (FMM) by Greengard and Rokhlin in 1987,39

both of which were listed among the ten most significant algorithms discovered in the40

20th century. Among existing analytical and algebraic methods for OIOs, butterfly al-41

gorithms [53, 47, 37, 36, 58] represent an emerging class of multilevel matrix decompo-42
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sition algorithms that have been proposed for Fourier transforms and Fourier integral43

operators [8, 70, 69], special function transforms [65, 4, 56], fast iterative [54, 53, 48]44

and direct [24, 43, 25, 26, 61, 44, 62] solution of surface and volume integral equations45

for wave equations, high-frequency Green’s function ansatz for inhomogeneous wave46

equations [45, 41, 49], direct solution of PDE-induced sparse systems [42, 13], and47

machine learning for inverse problems [33, 35]. The (matrix) butterfly algorithms48

leverage the so-called complementary low-rank (CLR) property of the matrix repre-49

sentation of OIOs after proper row/column permutation. The CLR states that any50

submatrix with contiguous row and column index sets exhibits a low numerical rank51

if the number of the submatrix entries approximately equals the matrix size. These52

ranks are known as the butterfly ranks, which stay constant irrespective of the ma-53

trix sizes. This permits a multilevel sparse matrix decomposition requiring O(n log n)54

factorization time, application time, and storage units with n being the matrix size.55

Despite their low asymptotic complexity, the matrix butterfly algorithms often-56

times exhibit relatively large prefactors, i.e., constant but high butterfly ranks, par-57

ticularly for higher-dimensional OIOs. Examples include Green’s functions for 3D58

high-frequency wave equations [61, 45], 3D Radon transforms for linear inverse prob-59

lems [17], 6D Fourier–Bros–Iagolnitzer transforms for Wigner equations [15, 68], 6D60

Fourier transforms in diffusion magnetic resonance imaging [11] and plasma physics61

[18], 4D space-time transforms in quantum field theories [59, 50], and multi-particle62

Green’s functions in quantum chemistry [21]. For these high-dimensional OIOs, the63

computational advantage of the matrix butterfly algorithms over other existing algo-64

rithms becomes significant only for very large matrices.65

More broadly speaking, for large-scale multi-dimensional scientific data and op-66

erators, tensor algorithms are typically more efficient than matrix algorithms. Popu-67

lar low-rank tensor compression algorithms include CANDECOMP/PARAFAC [30],68

Tucker [16], hierarchical Tucker [28], tensor train (TT) [57], and tensor network [12]69

decomposition algorithms. See references [34, 23] for a more complete review of70

available tensor formats and their applications. When applied to the representa-71

tion of high-dimensional integral operators, tensor algorithms often leverage addi-72

tional translational- or scaling-invariance property to achieve superior compression73

performance, including solution of quasi-static wave equations [67, 66, 22, 14], elliptic74

PDEs [3, 27], many-body Schrödinger equations [31], and quantum Fourier trans-75

forms (QFTs) [9]. That being said, most existing tensor decomposition algorithms76

will break down for OIOs due to their incapability to exploit the oscillatory structure77

of these operators; therefore, new tensor algorithms are called for.78

In this paper, we propose a linear-complexity, low-prefactor tensor decomposi-79

tion algorithm for large-scale and high-dimensional OIOs. This new tensor algorithm,80

henceforth dubbed the tensor butterfly algorithm, leverages the intrinsic CLR prop-81

erty of high-dimensional OIOs more effectively than the matrix butterfly algorithm,82

which is enabled by additional tensor properties such as translational invariance of83

free-space Green’s functions and dimensional separability of Fourier transforms. The84

algorithm partitions the OIO tensor into subtensors of multiple levels, and factor-85

izes each subtensor at the middle level as a Tucker-type interpolative decomposition,86

whose factor matrices are further constructed in a nested fashion. For a d-dimensional87

OIO (assuming a constant d > 1) discretized as a 2d-mode tensor with n being the size88

per mode, the factorization time, application time, and storage cost scale as O(nd),89

and the resulting tensor factors have small multi-linear ranks. This is in stark contrast90

both to the O(nd log n) scaling of existing matrix algorithms such as matrix butterfly91

algorithms and FFTs, and to the super-linear scaling of existing tensor algorithms. We92
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mention that the linear complexity of the factorization time in our proposed algorithm93

is achieved via a simple random entry evaluation scheme, assuming that any arbitrary94

entry can be computed in O(1) time. We remark that, for 3D high-frequency wave95

equations, the proposed tensor butterfly algorithm can handle 512× larger discretized96

Green’s function tensors than existing butterfly algorithms using the same amount97

of computation resources; on the other hand, for the largest sized tensor that can98

be handled by existing butterfly algorithms, our tensor butterfly algorithm is 200×99

faster than existing ones. Moreover, we claim that the tensor butterfly algorithm100

instantiates the first linear-complexity implementation of high-dimensional FFTs for101

arbitrary input data.102

1.1. Related Work. Multi-dimensional butterfly algorithms represent a version103

of matrix butterfly algorithms designed for high-dimensional OIOs [38, 10]. Instead104

of the traditional binary tree partitioning of the matrix rows/columns [53], these105

algorithms can be viewed as a modern version of [54] that permits quadtree and octree106

partitioning of the matrix rows/columns, which have been demonstrated on 2D and107

3D OIOs. For a general d-dimensional OIO, the d-dimensional tree partitioning leads108

to a butterfly factorization with a d-fold reduction in the number of levels compared109

to the binary tree partitioning. That said, the binary tree based butterfly algorithms110

are easier to implement and exhibit very competitive overall costs comparing with the111

multi-dimensional butterfly algorithms. We note that both the multi-dimensional and112

binary tree-based butterfly algorithms are still matrix-based algorithms that scale as113

O(nd log n), as opposed to the proposed tensor algorithm that scales as O(nd).114

Quantized tensor train (QTT) algorithms, or simply TT algorithms, are tensor115

algorithms well-suited for very high-dimensional integral operators. They have been116

proposed to compress volume integral operators [14] arising from quasi-static wave117

equations and static PDEs with O(log n) memory and CPU complexities. However,118

for high-frequency wave equations, the QTT rank scales proportionally to the wave119

number [14] leading to deteriorated CPU and memory complexities (see our numerical120

results in Section section 4). Moreover, QTT has been proposed for computing FFT121

and QFT with O(log n) memory and CPU complexities [9]. However, after obtaining122

the QTT-compressed formats of both the volume-integral operator and the Fourier123

transform, the CPU complexity for contracting such a QTT compressed operator with124

arbitrary (i.e., non QTT-compressed) input data scales super-linearly. In contrast, our125

algorithm yields a linear CPU and memory complexity for the contraction operation.126

1.2. Contents. In what follows, we first review the matrix low-rank decompo-127

sition and butterfly decomposition algorithms in section 2. In subsection 3.1, we in-128

troduce the Tucker-type interpolative decomposition algorithm as the building block129

for the proposed tensor butterfly algorithm detailed in subsection 3.2. The multi-130

linear butterfly ranks for a few special cases are analyzed in subsection 3.2.1 and the131

complete complexity analysis is given in subsection 3.2.2. Section 4 shows a variety132

of numerical examples, including Green’s functions for wave equations, Radon trans-133

forms, and uniform and non-uniform discrete Fourier transforms, to demonstrate the134

performance of matrix butterfly, tensor butterfly, Tucker and QTT algorithms.135

1.3. Notations. Given a scalar-valued function f(x), its integral transform is136

defined as137

(1.1) g(x) =

∫
y

K(x, y)f(y)dy138
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with an integral kernel K(x, y). The indexing of a matrix K is denoted by K(i, j)139

or K(t, s), where i, j are indices and t, s are index sets. We use KT to denote the140

transpose of matrix K. For a sequence of matrices K1, . . . ,Kn, the matrix product is141

(1.2)

n∏
i=1

Ki = K1K2 . . .Kn,142

the vertical stacking (assuming the same column dimension) is143

(1.3) [Ki]i = [K1; K2; . . . ; Kn],144

and145

(1.4) diagi(Ki) = diag(K1,K2, . . . ,Kn)146

is a block diagonal matrix with Ki being the diagonal blocks. Given an L-level binary-147

tree partitioning Tt of an index set t = {1, 2, ···, n}, any node τ at each level is a subset148

of t. The parent and children of τ are denoted by pτ and τ c (c = 1, 2), respectively,149

and τ = τ1 ∪ τ2.150

A multi-index i = (i1, · · ·, id) is a tuple of indices, and similarly a multi-set151

τ = (τ1, τ2, · · ·, τd) is a tuple of index sets. We define152

(1.5) τk←t = (τ1, τ2, · · ·, τk−1, t, τk+1, τk+2, · · ·, τd).153

Given a tuple of nodes (i.e. a multi-set) τ = (τ1, τ2, · · ·, τd) and a multi-index c =154

(c1, c2, · · ·, cd) with ci ∈ {1, 2}, the children of τ are denoted τ c = (τ1
c1 , τ2

c2 , · · ·, τdcd)155

and the parents of τi, i = 1, 2, · · ·, d can be simply written as pτ = (pτ1 , pτ2 , · · ·, pτd).156

Similar to the above-described notations, we can replace the index i in [Ki]i and157

diagi(Ki) with an index set τ , a multi-index c, or a multi-set τ assuming certain158

predefined index ordering.159

Given complex-valued (or real-valued) functions f(x) of d variables and inte-160

gral operators K(x, y), the tensor representations of their discretizations are respec-161

tively denoted by F ∈ Cn1×n2×···×nd and K ∈ Cm1×m2×···×md×n1×n2×···×nd , where162

n1, · · · , nd and m1, · · · ,md are sizes of discretizations for the corresponding vari-163

ables. In this paper, we use matricization to denote the reshaping of K into a164

(Πkmk)×(Πknk) matrix, and the reshaping of F into a (Πknk)×1 matrix. The entries165

of F and K are denoted by F(i) (or equivalently F(i1, i2, · · ·, id)) and K(i, j), respec-166

tively. Similarly the subtensors are denoted by F(τ ) (or equivalently F(τ1, τ2, ···, τd))167

and K(τ ,ν).168

Given a d-mode tensor F ∈ Cn1×n2×···×nd , the mode-j unfolding is denoted by169

F(j) ∈ C(Πk 6=jnk)×nj , the mode-j tensor-matrix product of F with a matrix X ∈170

Cm×nj is denoted by Y = F ×j X, or equivalently Y(j) = F(j)XT .171

2. Review of Matrix Algorithms. We consider a d-dimensional OIO kernel172

K(x, y) with x, y ∈ Rd discretized on point pairs xi and yj , i = 1, 2, ..., (m1m2 ·173

· · md), j = 1, 2, ..., (n1n2 · · · nd), where i (and similarly j) is the flattening of the174

corresponding multi-index i. Such a discretization can be represented as a matrix175

K ∈ C(m1m2···md)×(n1n2···nd). When it is clear in the context, we assume that mk =176

nk = n for k = 1, . . . , d. Throughout this paper, we assume that K (and its tensor177

representation) is never fully formed, but instead a function is provided to evaluate any178

matrix (or tensor) entry in O(1) time. Next we review matrix compression algorithms179

for K including low-rank and butterfly algorithms.180
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2.1. Interpolative Decomposition. The interpolative decomposition (ID) al-181

gorithm [29, 39] is a matrix compression technique that constructs a low-rank de-182

composition whose factors contain original entries of the matrix. More specifically,183

consider the matrix K(τ, ν) ∈ Cm×n, τ = {1, 2, . . . ,m}, ν = {1, 2, . . . , n}, the column184

ID of K (the index sets τ and ν are omitted for clarity in context) is185

(2.1) K ≈ K(:, ν)V,186

where the skeleton matrix K(:, ν) contains r skeleton columns indexed by ν ⊆ ν and187

the interpolation matrix V has bounded entries. Here the numerical rank r is chosen188

such that189

(2.2) ‖K−K(:, ν)V‖2F 6 O(ε2)‖K‖2F190

for a prescribed relative tolerance ε. In practice, the column ID can be computed via191

rank-revealing QR decomposition with a relative tolerance ε [39]. Similarly, the row192

ID of the matrix K reads193

(2.3) K ≈ UK(τ , :),194

where the skeleton matrix K(τ , :) contains r skeleton rows indexed by τ ⊆ τ and the195

interpolation matrix U has bounded entries. The row ID can be simply computed by196

the column ID of KT . Combining the column and row ID in (2.1) and (2.3) gives197

(2.4) K ≈ UK(τ , ν)V.198

It is straightforward to note that the memory and CPU complexities of ID scale as199

O(nr) and O(n2r), respectively. The CPU complexity can be reduced to O(nr2)200

when properly selected proxy rows in (2.1) and columns in (2.3) are used in the rank-201

revealing QR. Common strategies of choosing proxy rows/columns (henceforth called202

proxy index strategies) for integral operators include evenly spaced or uniform random203

samples, and more generally the use of Chebyshev nodes and proxy surfaces (where204

new rows K(x, yj) other than original rows of K are used with x denoting the proxies).205

However, for large OIOs (e.g., Green’s functions of high-frequency wave equations206

discretized with a small number of points per wavelength), the rank r depends on the207

size n of the matrix; consequently, ID is not an efficient compression algorithm. Next,208

we review the matrix butterfly algorithm capable of achieving quasi-linear memory209

and CPU complexities for OIOs.210

2.2. Matrix Butterfly Algorithm. For reasons discussed in subsection 1.1,211

we only consider the binary tree based matrix butterfly algorithm as the reference212

algorithm for the proposed tensor butterfly algorithm throughout this paper. Let213

t0 = {1, 2, · · ·,m} and s0 = {1, 2, · · ·, n}. Without loss of generality, we assume that214

m = n. The L-level butterfly representation of the discretized OIO K(t0, s0) is based215

on two binary trees, Tt0 and Ts0 , and the CLR property of the OIO takes the following216

form: at any level 0 ≤ l ≤ L, for any node τ at level l of Tt0 and any node ν at level217

L− l of Ts0 , the subblock K(τ, ν) is numerically low-rank with rank rτ,ν bounded by218

a small number r called the butterfly rank [47, 36, 37, 58].219

For any subblock K(τ, ν), the ID in (2.4) permits220

(2.5) K(τ, ν) ≈ Uτ,νK(τ , ν)Vτ,ν ,221

where the skeleton rows and columns are indexed by τ and ν, respectively. It is worth222

noting that given a node ν, the selection of skeleton columns ν depends on the node223
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τ . However, the notation ·̄ does not reflect the dependency when it is clear in the224

context. By CLR, there are at most r skeleton rows and columns.225

Without loss of generality, we assume that L is an even number so that Lc = L/2226

denotes the middle level. At levels l = 0, . . . , Lc, the interpolation matrices Vτ,ν are227

computed as follows:228

At level l = 0, Vτ,ν are explicitly formed. While at level 0 < l ≤ Lc, they are229

represented in a nested fashion. To see this, consider a node pair (τ, ν) at level l > 0230

and let ν1, ν2 and pτ be the children and parent of ν and τ , respectively. Let s be the231

ancestor of ν at level Lc of Ts0 and let Ts denote the subtree rooted at s.232

By (2.4), we have233

K(τ, ν) =
[
K(τ, ν1) K(τ, ν2)

]
234

≈
[
K(τ, ν1) K(τ, ν2)

] [Vs
pτ ,ν1

Vs
pτ ,ν2

]
(2.6)235

≈ K(τ, ν)Ws
τ,ν

[
Vs
pτ ,ν1

Vs
pτ ,ν2

]
.(2.7)236

237

Here Ws
τ,ν and ν are the interpolation matrix and skeleton columns from the ID of238

K(τ, ν1 ∪ ν2), respectively. Wτ,ν is henceforth referred to as the transfer matrix for239

ν in the rest of this paper. By CLR, Wτ,ν is of sizes at most r × 2r. Note that we240

have added an additional superscript s to Vpτ ,νc and Wτ,ν , for notation convenience241

in the later context. From (2.6), it is clear that the interpolation matrix Vs
τ,ν can be242

expressed in terms of its parent pτ ’s and children ν1, ν2’s interpolation matrices as243

(2.8) Vs
τ,ν = Ws

τ,ν

[
Vs
pτ ,ν1

Vs
pτ ,ν2

]
.244

Note that the interpolation matrices Vs
τ,ν at level l = 0 and transfer matrices Ws

τ,ν245

at level 0 < l ≤ Lc do not require the column ID on the full subblocks K(τ, ν) and246

K(τ, ν1 ∪ ν2), which would lead to at least an O(mn) computational complexity.247

In practice, one can select O(rτ,ν) proxy rows τ̂ ⊂ τ to compute Vs
τ,ν and Ws

τ,ν248

via ID as:249

K(τ̂ , ν) ≈ K(τ̂ , ν)Vs
τ,ν , l = 0,(2.9)250

K(τ̂ , ν1 ∪ ν2) ≈ K(τ̂ , ν)Ws
τ,ν , 0 < l ≤ Lc.(2.10)251252

The viable choices for proxy rows have been discussed in several existing papers [45,253

58, 61, 8].254

At levels l = Lc, . . . , L, the interpolation matrices Uτ,ν are computed by perform-255

ing similar operations on KT . We only provide their expressions here and omit the256

redundant explanation. Let t be the ancestor of ν at level Lc of Tt0 and let Tt be the257

subtree rooted at t. At level l = L, Ut
τ,ν are explicitly formed. At level Lc ≤ l < L,258

only the transfer matrices Pt
τ,ν are computed from the column ID of KT (ν, τ1 ∪ τ2)259

satisfying260

(2.11) Ut
τ,ν =

[
Ut
τ1,pν

Ut
τ2,pν

]
Pt
τ,ν .261

Combining (2.5), (2.8) and (2.11), the matrix butterfly decomposition can be262
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Meaning Matrix butterfly Tensor butterfly
Butterfly rank rm rt
Set/multi-set τ, ν τ ,ν

kth set of multi-set - τk, νk
Parent set/multi-set pτ pτ

Children set/multi-set τ c τ c

Root-level set/multi-set t0, s0 t0, s0

Mid-level set/multi-set t, s t, s
Binary tree Tt0 , Ts0 Tt0k , Ts0k

Cardinality of leaf nodes Cdb Cb
Cardinality of root nodes nd n

Mid-level submatrix/subtensor K(t, s) K(t, s)
Interpolation matrix Vs

τ,ν ,Ut
τ,ν Vs,k

τ ,ν , Ut,k
τ,ν

Transfer matrix Ws
τ,ν ,Pt

τ,ν Ws,k
τ ,ν , Pt,kτ,ν

Interpolation factor U
t
, V

s
U
t,k

, V
s,k

Transfer factor P
t,s

l , W
t,s

l P
t,s,k

l , W
t,s,k

l

Table 2.1: Notation comparison of the matrix butterfly algorithm in subsection 2.2 and
the tensor butterfly algorithm in subsection 3.2. Note that the subscript k in τk, νk,
in the tensor notations of the interpolation/transfer matrix and interpolation/transfer
factor for dimension k, is dropped for simplicity throughout this paper.

expressed for each node pair (t, s) at level Lc of Tt0 and Ts0 as263

K(t, s) ≈ U
t
( Lc∏
l=1

P
t,s

l

)
K(t, s)

( 1∏
l=Lc

W
t,s

l

)
V
s
.(2.12)264

265

Here, t and s represent the skeleton rows and columns of the ID of K(t, s). The266

interpolation factors U
t

and V
s

in (2.12) are267

U
t

= diagτ (Ut
τ,s0), τ at level Lc of Tt,(2.13)268

V
s

= diagν(Vs
t0,ν), ν at level Lc of Ts,(2.14)269

270

and the transfer factors P
t,s

l and W
t,s

l for l = 1, . . ., Lc consist of transfer matrices271

Ws
τ,ν and Ps

τ,ν :272

W
t,s

l = diagτ

( [
diagν(Ws

τc,ν)
]
c

)
,
τ at level l − 1 of Tt0 , and t ⊆ τ,
ν at level Lc − l of Ts;

(2.15)273

(P
t,s

l )T = diagν

( [
diagτ

(
(Pt

τ,νc)
T
)]
c

)
,
τ at level Lc − l of Tt,
ν at level l − 1 of Ts0 , and s ⊆ ν.

(2.16)274

275

Here τ c and νc with c = 1, 2 are children of τ and ν, respectively. For the ease276

of comparison with the tensor butterfly algorithm in subsection 3.2, we list some277

notations of the matrix butterfly algorithm in Table 2.1.278

The CPU and memory requirement for computing the matrix butterfly decom-279

position can be briefly analyzed as follows. Note that we only need to analyze the280
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costs for Vs
τ,ν , Ws

τ,ν and K(t, s) as those for Ut
τ,ν and Pt

τ,ν are similar. By the CLR281

assumption, we assume that rτ,ν ≤ r, ∀τ, ν for some constant r. Thanks to the use282

of the proxy rows and columns, the computation of one individual Vs
τ,ν and Ws

τ,ν by283

ID only operates on O(r)×O(r) matrices, hence its memory and CPU requirements284

are O(r2) and O(r3), respectively. In total, there are O(2L
c

) middle-level nodes s285

each having O(2L
c

) numbers of Vs
τ,ν and O(Lc2L

c

) numbers of Ws
τ,ν . Similarly, each286

K(t, s) requires O(r2) CPU and memory costs, and there are in total O(2L) middle-287

level node pairs (t, s). These numbers sum up to the overall O(nr2 log n) memory and288

O(nr3 log n) CPU complexities for matrix butterfly algorithms.289

For d-dimensional discretized OIOs K ∈ C(m1m2···md)×(n1n2···nd) with mk = nk =290

n, we can assume that n = Cb2
L with some constant Cb. For the above-described291

binary-tree-based butterfly algorithm, the leaf nodes of the trees are of size Cdb and292

this leads to a dL-level butterfly factorization. The memory and CPU complexities for293

this algorithm become O(dndr2 log n) and O(dndr3 log n), respectively. On the other294

hand, the multi-dimensional tree-based butterfly algorithm [38, 10] leads to a L-level295

factorization with O(2dndr2 log n) memory and O(2dndr3 log n) CPU complexities.296

In this paper, we only use the binary-tree-based algorithm as the baseline matrix297

butterfly algorithm. Despite their quasi-linear complexity for high-dimensional OIOs,298

the butterfly rank r is constant but high, leading to very large prefactors of these299

binary and multi-dimensional tree-based algorithms. In the following, we turn to ten-300

sor decomposition algorithms to reduce both the prefactor and asymptotic scaling of301

matrix butterfly algorithms. The proposed tensor decomposition explores additional302

tensor compressibility of high-dimensional OIOs such as translational invariance of303

free-space Green’s functions and dimensional separability of Fourier transforms. As304

will be clear in the next section, the prefactor (dependent on the butterfly rank) can305

be reduced by leveraging Tucker decomposition for tensorization of the middle-level306

submatrices K(t, s) of (2.12). The Tucker decomposition is further factored out along307

each dimension in a nested fashion by simultaneously moving along the binary tree308

of that dimension and d binary trees of other dimensions. As a result, the number309

of transfer matrices becomes dominant only towards the middle level Lc, leading to a310

factor of log n reduction in the asymptotic complexity.311

3. Proposed Tensor Algorithms. In this section, we assume that the d-312

dimensional discretized OIO in section 2 is directly represented as a 2d-mode tensor313

K ∈ Cm1×m2×···×md×n1×n2×···×nd . We first extend the matrix ID algorithm in sub-314

section 2.1 to its tensor variant, which serves as the building block for the proposed315

tensor butterfly algorithm.316

3.1. Tucker-type Interpolative Decomposition. Given the 2d-mode tensor317

K(τ ,ν) with τk = {1, 2, . . . ,mk} and νk = {1, 2, . . . , nk} for k = 1, . . . , d, the pro-318

posed Tucker-type decomposition compresses each dimension independently via the319

column ID of the unfolding of K along the k-th dimension,320

(3.1) K(k)≈K(k)(:, τk)Uk, K(d+k)≈K(d+k)(:, νk)Vk, k = 1, . . . , d,321

where K(k) ∈ C(
∏
j 6=k nj)×nk is the mode-k unfolding, or equivalently322

(3.2) K≈K(τk←τk ,ν)×k Uk, K≈K(τ ,νk←νk)×d+k Vk, k = 1, . . . , d.323

Here, τk and νk denote the skeleton indices along modes k and d+k of K, respectively,324

while τk←τk and νk←νk denote multi-sets that replace τk and νk, respectively, with τk325
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(a) (b) (c)

Fig. 3.1: Tensor diagrams for (a) the Tucker-ID decomposition of a 4-mode tensor,
and (b) the matrix partitioner corresponding to a 2d× 2 partitioning with d = 2 used

in the tensor butterfly decomposition of a 2d-mode tensor, such as
[
Ws,k
τc,ν

]
c

in (3.14)

for fixed s, τ , k and ν, or
[
Pt,kτ,νc

]
c

in (3.13) for fixed t,ν, k and τ . Here, each of the

row and column dimensions is connected to a partitioning node. Each partitioning
node has a parent edge with an arrow pointing to the dimension to be partitioned,
and several children edges connected to the parent edge. The weight of the parent
edge (i.e., the number of columns or rows of the matrix) equals the sum of the weights

of the children edges. (c) The tensor diagram involving blocks Vs,k
t0,ν (in green) and

blocks
[
Ws,k
τc,ν

]
c

(in blue) for fixed s and k for the tensor butterfly decomposition of

a 2d-mode tensor.

and νk. Combining (3.2) for all dimensions yields the following proposed Tucker-type326

decomposition,327

(3.3) K≈K(τ ,ν)

( d∏
k=1

×kUk

)( d∏
k=1

×d+kV
k

)
,328

where, τ = (τ1, τ2, . . . , τd), ν = (ν1, ν2, . . . , νd), the core tensor K(τ ,ν) is a subtensor329

of K, and Uk and Vk are the factor matrices for modes k and d+ k, respectively.330

See Figure 3.1(a) for the tensor diagram of (3.3) for a 4-mode tensor, which331

has the same diagram as other existing Tucker decompositions such as high-order332

singular value decompositions (HOSVD) [16]. However, unlike HOSVD that leads to333

orthonormal factor matrices, the proposed decomposition leads to factor matrices with334

bounded entries and the core tensor with the original tensor entries. Therefore, the335

proposed decomposition is named Tucker-type interpolative decomposition (Tucker-336

ID). It is worth noting that there exist several interpolative tensor decomposition337

algorithms [6, 51, 52, 60, 55]. However they either use original tensor entries in the338

factor matrices (instead of the core tensor) [51, 60, 6] or rely on a different tensor339

diagram [52]. Note that the structure-preserving decomposition in [55] is similar to340

Tucker-ID but relies on sketching instead of proxy indices for the construction. As will341

be seen in subsection 3.2, the Tucker-ID algorithm is a unique and essential building342

block of the tensor butterfly algorithm.343

Just like HOSVD, one can easily show that if the approximations in (3.1) hold344

true up to a predefined relative compression tolerance ε as345

||K(k) −K(k)(:, τk)Uk||F ≤ ε||K||F , k = 1, . . . , d,346

||K(d+k)−K(d+k)(:, νk)Vk||F ≤ ε||K||F , k = 1, . . . , d,(3.4)347348
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then the Tucker-ID of (3.3) satisfies349

(3.5)

∣∣∣∣∣∣∣∣K−K(τ ,ν)

( d∏
k=1

×kUk

)( d∏
k=1

×d+kV
k

)∣∣∣∣∣∣∣∣
F

≤ ε
√

2d||K||F .350

351

The memory and CPU complexities of Tucker-ID can be briefly analyzed as fol-352

lows. Assuming that mk = nk = n and maxk |τk|=maxk |νk| = r is a constant (we353

will discuss the case of non-constant r in subsection 3.2.3), the memory requirement354

is simply O(drn + r2d), where the first and second term represent the storage units355

for the factor matrices and the core tensor, respectively. The CPU cost for naive356

computation of Tucker-ID is O(drn2d + r2d), where the first term represents the cost357

of rank-revealing QR of the unfolding matrices in (3.1), and the second term repre-358

sents the cost forming the core tensor K(τ ,ν). In practice, however, the unfolding359

matrices do not need to be fully formed and one can leverage the idea of proxy rows360

in subsection 2.2 to reduce the cost for computing the factor matrices to O(dnr2d).361

We will explain this in more detail in the context of the proposed tensor butterfly362

decomposition algorithm.363

Just like the matrix ID algorithm, Tucker-ID is also not suitable for representing364

large-sized OIOs as the rank r depends on the size n. That said, the Tucker-ID rank365

is typically significantly smaller than the matrix ID rank, as it exploits more com-366

pressibility properties across dimensions by leveraging e.g. translational-invariance367

or dimensional-separability properties of OIOs; see subsection 3.2.1 for a few of such368

examples. In what follows, we use Tucker-ID as the building block for constructing a369

linear-complexity tensor butterfly decomposition algorithm for large-sized OIOs.370

3.2. Tensor Butterfly Algorithm. Consider a 2d-mode OIO tensor K(t0, s0)371

with t0 = (t01, t
0
1, . . . , t

0
d), s

0 = (s0
1, s

0
1, . . . , s

0
d), t

0
k = {1, 2, . . . ,mk}, s0

k = {1, 2, . . . , nk},372

k = 1, 2, . . . , d. Without loss of generality, we assume that mk = nk = n. We further373

assume that each t0k (and s0
k) is binary partitioned with a tree Tt0k (and Ts0k) of L levels374

for k = 1, 2, . . . , d.375

To start with, we first define the tensor CLR property as follows:376

• For any level 0 ≤ l ≤ Lc, any multi-set τ = (τ1, τ2, . . . , τd) with τi, i ≤ d at level377

l of Tt0i , any multi-set s = (s1, s2, . . . , sd) with si, i ≤ d at level Lc of Ts0i , any378

mode 1 ≤ k ≤ d, and any node ν at level Lc − l of Tsk , the mode-(d+ k) unfolding379

of the subtensor K(τ , sk←ν) is numerically low-rank (with rank bounded by r),380

permitting an ID via (3.2):381

(3.6) K(τ , sk←ν) ≈ K(τ , sk←ν)×d+k Vs,k
τ ,ν .382

• For any level 0 ≤ l ≤ Lc, any multi-set ν = (ν1, ν2, . . . , νd) with νi, i ≤ d at level383

l of Ts0i , any multi-set t = (t1, t2, . . . , td) with ti, i ≤ d at level Lc of Tt0i , any384

mode 1 ≤ k ≤ d, and any node τ at level Lc− l of Ttk , the mode-k unfolding of the385

subtensor K(tk←τ ,ν) is numerically low-rank (with rank bounded by r), permitting386

an ID via (3.2):387

(3.7) K(tk←τ ,ν) ≈ K(tk←τ ,ν)×k Ut,k
τ,ν .388

In essence, the tensor CLR in (3.6) and (3.7) investigates the unfolding of judiciously389

selected subtensors rather than the matricization used in the matrix CLR. Moreover,390

the tensor CLR requires fixing d − 1 modes of the 2d-mode subtensors to be of size391

O(
√
n) while changing the remaining d + 1 modes with respect to l. Therefore each392
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ID computation can operate on larger subtensors compared to the matrix CLR. In393

subsection 3.2.1 we provide two examples, namely a free-space Green’s function tensor394

and a high-dimensional Fourier transform, to explain why the tensor CLR is valid, and395

in subsection 3.2.2 we will see that the tensor CLR essentially reduces the quasilinear396

complexity of the matrix butterfly algorithm to linear complexity. Here, assuming397

that the tensor CLR holds true, we describe the tensor butterfly algorithm. We note398

that there may be alternative ways to define the tensor CLR different from (3.6) and399

(3.7), and we leave that as a future work. To avoid notation confusion, we list some400

notations of the tensor butterfly algorithm in Table 2.1.401

In what follows, we focus on the computation of Vs,k
τ ,ν (corresponding to the402

mid-level multi-set s), as Ut,k
τ,ν (corresponding to the mid-level multi-set t) can be403

computed in a similar fashion. At level l = 0, Vs,k
τ ,ν are explicitly formed. At level404

0 < l ≤ Lc, they are represented in a nested fashion. Let pτ = (pτ1 , pτ2 , . . . , pτd)405

consist of parents of τ = (τ1, τ2, . . . , τd) in (3.6).406

By the tensor CLR property, we have407

K(τ , sk←ν) ≈ K(τ , sk←ν1∪ν2)×d+k

[
Vs,k
pτ ,ν1

Vs,k
pτ ,ν2

]
408

≈ K(τ , sk←ν)×d+k

(
Ws,k
τ ,ν

[
Vs,k
pτ ,ν1

Vs,k
pτ ,ν2

])
.(3.8)409

410

Comparing (3.8) and (3.6), one realizes that the interpolation matrix Vs,k
τ ,ν is411

represented as the product of the transfer matrix Ws,k
τ ,ν and diagc(V

s,k
pτ ,νc). Here, the412

transfer matrix Ws,k
τ ,ν is computed as the interpolation matrix of the column ID of413

the mode-(d+ k) unfolding of K(τ , sk←ν1∪ν2). As mentioned in section 3, in practice414

one never forms the unfolding matrix in full, but instead considers the unfolding of415

K(τ̂ , ŝk←ν1∪ν2), where τ̂ = (τ̂1, τ̂2, . . . , τ̂d) and ŝ = (ŝ1, ŝ2, . . . , ŝd); here τ̂i and ŝi416

consist of O(r) judiciously selected indices along modes i and d+ i, respectively. Note417

that ŝk is never used as it is replaced by ν1 ∪ ν2 in (3.8). The same proxy index418

strategy can be used to obtain Vs,k
τ ,ν at the level l = 0. For each Ws,k

τ ,ν or Vs,k
τ ,ν , its419

computation requires O(r2d+1) CPU time.420

Similarly in (3.7), Ut,k
τ,ν is explicitly formed at l = 0 and constructed via the421

transfer matrix Pt,kτ,ν at level 0 < l ≤ Lc:422

K(tk←τ ,ν) ≈ K(tk←τ1∪τ2 ,ν)×k

[
Ut,k
τ1,pν

Ut,k
τ2,pν

]
423

≈ K(tk←τ ,ν)×k

(
Pt,kτ,ν

[
Ut,k
τ1,pν

Ut,k
τ2,pν

])
.(3.9)424

425

Putting together (3.6), (3.7), (3.8) and (3.9), the proposed tensor butterfly de-426

composition can be expressed, for any multi-set t = (t1, t2, . . . , td) with ti at level Lc427

of Tt0i and any multi-set s = (s1, s2, . . . , sd) with si at level Lc of Ts0i , by forming a428

Tucker-ID for the (t, s) pair:429

(3.10)

K(t, s) ≈ K(t, s)

( d∏
k=1

×k
( 1∏
l=Lc

P
t,s,k

l U
t,k
))( d∏

k=1

×d+k

( 1∏
l=Lc

W
t,s,k

l V
s,k
))
.430
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Here, t and s represent the skeleton indices of the Tucker-ID of K(t, s). The431

interpolation factors U
t,k

and V
s,k

in (3.10) are:432

U
t,k

= diagτ (Ut,k
τ,s0), τ at level Lc of Ttk ,(3.11)433

V
s,k

= diagν(Vs,k
t0,ν), ν at level Lc of Tsk ,(3.12)434

435

and the transfer factors P
t,s,k

l and W
t,s,k

l for l = 1, . . ., Lc are:436

P
t,s,k

l = diagν

( [
diagτ (Pt,kτ,νc)

]
c

)
,
τ at level Lc − l of Ttk ,
νi at level l − 1 of Ts0i , si ⊆ νi, i ≤ d;

(3.13)437

W
t,s,k

l = diagτ

( [
diagν(Ws,k

τc,ν)
]
c

)
,
τi at level l − 1 of Tt0i , ti ⊆ τi, i ≤ d,
ν at level Lc − l of Tsk .

(3.14)438

439

One can verify that when d = 1, the tensor butterfly algorithm (3.10) reduces440

to the matrix butterfly algorithm (2.12). But when d > 1, the tensor butterfly algo-441

rithm has a distinct algorithmic structure so that the corresponding computational442

complexity can be significantly reduced compared with the matrix butterfly algorithm.443

Detailed computational complexity analysis is provided in subsection 3.2.2.444

To better understand the structure of the tensor butterfly in (3.10), (3.11), (3.12),445

(3.13), and (3.14), we describe its tensor diagram here. We first create the tensor446

diagram for a matrix partitioner as shown in Figure 3.1(b), which represents a 2d× 2447

block partitioning of a matrix such as
[
Ws,k
τc,ν

]
c

in (3.14) for fixed s, τ , k and ν,448

or
[
Pt,kτ,νc

]
c

in (3.13) for fixed t,ν, k and τ . In Figure 3.1(b), each of the row and449

column dimensions is connected to a partitioning node. The row partitioning node has450

a parent edge with an arrow pointing to the row dimension to be partitioned, and 2451

children edges connected to the parent edge. Similarly, the column partitioning node452

has a parent edge with an arrow pointing to the column dimension to be partitioned,453

and 2d children edges connected to the parent edge. The weight of the parent edge454

(i.e., the number of columns and rows of the matrix) equals the sum of the weights455

of the children edges. The diagram in Figure 3.1(c) shows the connectivity for all456

Vs,k
t0,ν (the green circles) and

[
Ws,k
τc,ν

]
c

(the blue circles) for fixed s and k. The457

multiplication or contraction of all matrices in Figure 3.1(c) results in Vs,k
t,sk

for all458

mid-level multi-sets t, which are of course not explicitly formed.459

As an example, consider an OIO representing the free-space Green’s function in-460

teraction between two parallel facing unit square plates in Figure 3.2. The tensor is461

K(i, j) = K(xi, yj) = exp(−iωρ)
ρ where xi = ( i1n ,

i2
n , 0), yj = ( j1n ,

j2
n , 1), ρ = |xi − yj |462

and ω is the wavenumber. Here 1 represents the distance between the two plates.463

Consider an L=2-level tensor butterfly decomposition, with a total of 16 middle-level464

multi-set pairs. Let (t, s) denote one middle-level multi-set pair with t = (t1, t2) and465

s = (s1, s2) as highlighted in orange in Figure 3.2(b). Their children are t11, t
1
2, t

2
1, t

2
2466

and s1
1, s

1
2, s

2
1, s

2
2. Leveraging the representations in Figure 3.1(b)-(c), the full di-467

agram for K(t, s) consists of one 4-mode tensor K(t, s) (highlighted in orange in468

Figure 3.2(a)), one transfer matrix per mode, and two factor matrices per mode. In469

addition, we plot the full connectivity for two other multi-set pairs (highlighted in470

green in Figure 3.2(a)). It is important to note that the factor matrices and transfer471

matrices are shared among the multi-set pairs.472
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mode 3
mode 4

mode 1

mode 2

(b)(a)

Fig. 3.2: (a) Tensor diagram for the tensor butterfly decomposition of L = 2 levels
of a 4-mode OIO tensor representing (b) high-frequency Green’s function interactions
between parallel facing 2D unit squares. Only the full connectivity regarding three
middle-level node pairs is shown (the two green circles and one orange circle in (a)).
The orange circle in (a) represents the core tensor K(t, s) for a mid-level pair (t, s)
with t = (t1, t2), s = (s1, s2) highlighted in orange in (b).

The proposed tensor butterfly algorithm is fully described in Algorithm 3.1 for a473

2d-mode tensor K ∈ Cm1×m2×···×md×n1×n2×···×nd , which consists of three steps: (1)474

computation of Vs,k
τ ,ν and Ws,k

τ ,ν starting at Line 1, (2) computation of Ut,k
τ,ν and Pt,kτ,ν475

starting at Line 17, and (3) computation of K(t, s) starting at Line 33. We note that,476

after each K(t, s) is formed, we leverage floating-point compression tools such as the477

ZFP software [40] to further compress it.478

Once K is compressed, any input tensor F ∈ Cn1×n2×···×nd×nv can contract with479

it to compute G = K ×d+1,d+2,...,2d F . It is clear to see that the contraction is480

equivalent to matrix-matrix multiplication G = KF, where G ∈ C
∏
kmk×nv , K ∈481

C
∏
kmk×

∏
k nk , and F ∈ C

∏
k nk×nv are matricizations of G, K and F , respectively,482

and nv is the number of columns of F. The contraction algorithm is described in483

Algorithm 3.2 which consists of three steps:484

(1) Contraction with Vs,k
τ ,ν and Ws,k

τ ,ν . For each level l = 0, 1, . . . , Lc, one notices that,485

since the contraction operation for each multi-set τ with τi at level l of Tt0i and486

the middle-level multi-set s is independent of each other, one needs a separate487

tensor Fτ ,s to store the contraction result for each multi-set pair (τ , s). Fτ ,s488

can be computed by mode-by-mode contraction with the factor matrices V
s,k

for489

l = 0 (Line 6) and the transfer matrices diagν(Ws,k
τ ,ν) for l > 0 (Line 8).490

(2) Contraction with K(t, s) at the middle level. Tensors at the middle level Ft,s491
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are contracted with each subtensor K(t, s) separately, resulting in tensors Gt,s =492

K(t, s)×d+1,d+2,...,2d Ft,s.493

(3) Contraction with Ut,k
τ,ν and Pt,kτ,ν . As Step (1), for each level l = Lc, Lc−1, . . . , 0,494

the contraction operation for each multi-set ν with νi at level l of Ts0i and middle-495

level multi-set t is independent. At level l > 0, the contribution of tensors Gt,ν is496

accumulated into Gt,pν (Line 26); at level l = 0, the contraction results are stored497

in the final output tensor G(t, 1 : nv) (Line 24).498

3.2.1. Rank Estimate. In this subsection, we use two specific high-dimensional499

examples, namely high-frequency free-space Green’s functions for wave equations and500

uniform discrete Fourier transforms (DFTs) to investigate the matrix and tensor CLR501

properties, and compare the matrix and tensor butterfly ranks rm and rt, respectively.502

For the Green’s function example, the tensor CLR property is a result of matrix CLR503

and translational invariance, and rt is much smaller than rm; for the DFT example, the504

tensor CLR property is a result of matrix CLR and dimensionality separability, and505

rt is exactly the same as rm of 1D DFTs. For more-general OIOs, such as analytical506

and numerical Green’s functions for inhomogeneous media, Radon transforms, non-507

uniform DFTs, and general Fourier integral operators, rigorous rank analysis is non-508

trivial and we rely on numerical experiments in section 4 to demonstrate the efficacy509

of the tensor butterfly algorithm.510

High-frequency Green’s functions. We use an example similar to the one used511

in subsection 3.2. Consider an OIO representing the free-space Green’s function in-512

teraction between two parallel-facing unit-square plates. The n × n × n × n tensor513

is514

(3.15) K(i, j) = K(xi, yj) =
exp(−iωρ)

ρ
,515

where xi = ( i1n ,
i2
n , 0), yj = ( j1n ,

j2
n , ρmin), ω is the wavenumber, and ρ = |xi−yj |. Here516

ρmin represents the distance between the two plates assumed to be sufficiently large.517

In the high-frequency setting, n = Cpω with a constant Cp independent of n and ω,518

and the grid size is δx = δy = 1
n per dimension. It has been well studied [53, 54, 20, 5]519

that for any multi-set pair (τ ,ν) (assuming that each set of the multi-set τ or ν520

contains contiguous indices) leading to a subtensor K(τ ,ν) of sizes m1×m2×n1×n2521

with mi, ni ≤ n, the numerical rank of its matricization K ∈ Cm1m2×n1n2 can be522

estimated as523

(3.16) rm ≈ ω2a2θφ+∆ε ≈
ω2a2n1n2

n2ρ2
min

+∆ε.524

Here a is the radius of the sphere enclosing the target domain of physical sizes m1δx×525

m2δy. θ ≈ n1

nρmin
, φ ≈ n2

nρmin
, and the product θφ represents the solid angle covered526

by the source domain as seen from the center of the target domain. Note that ωa
ρmin

527

approximately represents the Nyquist sampling rate per direction needed in the source528

domain. The ε-dependent term ∆ε = O(log ε−1) according to analysis in [53, 54]. The529

matrix and tensor butterfly ranks can be estimated as follows:530

• Matrix butterfly rank: Consider a matrix butterfly factorization of matricization of531

K. By design, for any node pair at each level, m1n1 = m2n2 = Cbn, where C2
b532

represents the size of the leaf nodes. Therefore, the matrix butterfly rank can be533

estimated from (3.16) as534

(3.17) rm ≈
C2
b

2C2
pρ

2
min

+∆ε.535
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Algorithm 3.1 Construction algorithm for the tensor butterfly decomposition of a
2d-mode tensor K ∈ Cm1×m2×···×md×n1×n2×···×nd

Input: A function to evaluate a 2d-mode tensor K(i, j) for arbitrary multi-indices
(i, j), binary partitioning trees of L levels Tt0k and Ts0k with roots t0k = {1, 2, . . . ,mk}
and s0

k = {1, 2, . . . , nk}, a relative compression tolerance ε.
Output: Tensor butterfly decomposition of K: (1) Vs,k

τ ,ν at l = 0 and Ws,k
τ ,ν at

1 ≤ l ≤ Lc of k ≤ d for multi-set τ with node τi at level l of Tt0i , multi-set s with

node si at level Lc of Ts0i , and node ν at level Lc − l of subtree Tsk , (2) Ut,k
τ,ν at l = 0

and Pt,kτ,ν at 1 ≤ l ≤ Lc of k ≤ d for multi-set ν with node νi at level l of Ts0i ,
multi-set t with node ti at level Lc of Tt0i , and node τ at level Lc − l of subtree Ttk ,

and (3) subtensors K(t, s) at l = Lc.

1: (1) Compute Vs,k
τ ,ν and Ws,k

τ ,ν :
2: for level l = 0, . . . , Lc do
3: for multi-set s = (s1, . . . , sd) with si at level L

c of Ts0i do

4: for multi-set τ = (τ1, τ2, . . . , τd) with τi at level l of Tt0i do
5: for mode index k = 1, . . . , d do
6: for node ν at level Lc − l of Tsk do
7: if l = 0 then . Use (3.6) with proxies τ̂ , ŝ and tolerance ε
8: Compute Vs,k

τ ,ν and ν via mode-(d+ k) unfolding of K(τ̂ , ŝk←ν)
9: else . Use (3.8) with proxies τ̂ , ŝ and tolerance ε

10: Compute Ws,k
τ ,ν and ν via mode-(d+ k) unfolding of

K(τ̂ , ŝ
k←ν1∪ν2)

11: end if
12: end for
13: end for
14: end for
15: end for
16: end for
17: (2) Compute Ut,k

τ,ν and Pt,kτ,ν :
18: for level l = 0, . . . , Lc do
19: for multi-set t = (t1, . . . , td) with ti at level L

c of Tt0i do

20: for multi-set ν = (ν1, ν2, . . . , νd) with νi at level l of Ts0i do
21: for mode index k = 1, . . . , d do
22: for node τ at level Lc − l of Ttk do
23: if l = 0 then . Use (3.7) with proxies t̂, ν̂ and tolerance ε
24: Compute Ut,k

τ,ν and τ via mode-k unfolding of K(t̂k←τ , ν̂)
25: else . Use (3.9) with proxies t̂, ν̂ and tolerance ε
26: Compute Pt,kτ,ν and τ via mode-k unfolding of K(t̂

k←τ1∪τ2 , ν̂)
27: end if
28: end for
29: end for
30: end for
31: end for
32: end for
33: (3) Compute K(t, s):
34: for multi-set s = (s1, . . . , sd) with si at level L

c of Ts0i do

35: for multi-set t = (t1, . . . , td) with ti at level L
c of Tt0i do

36: Compute K(t, s) and ZFP compress it
37: end for
38: end for
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Algorithm 3.2 Contraction algorithm for a tensor butterfly decomposition with an
input tensor

Input: The tensor butterfly decomposition of a 2d-mode tensor
K ∈ Cm1×m2×···×md×n1×n2×···×nd , and a (full) d+ 1-mode input tensor
F ∈ Cn1×n2×···×nd×nv where nv denotes the number of columns of F(d+1).
Output: The d+ 1-mode output tensor G = K×d+1,d+2,...,2d F where
G ∈ Cm1×m2×···×md×nv .

1: (1) Multiply with Vs,k
τ ,ν and Ws,k

τ ,ν :
2: for level l = 0, . . . , Lc do
3: for multi-set s = (s1, s2 . . . , sd) with si at level L

c of Ts0i do

4: for multi-set τ = (τ1, τ2, . . . , τd) with τi at level l of Tt0i do
5: if l = 0 then
6: Fτ ,s = F(s, 1 : nv)

∏d
k=1×kV

s,k

7: else
8: Fτ ,s = Fpτ ,s

∏d
k=1×kdiagν(W

s,k
τ ,ν) . ν at level Lc − l of Tsk

9: end if
10: end for
11: end for
12: end for
13: (2) Contract with K(t, s):
14: for multi-set t = (t1, t2 . . . , td) with ti at level L

c of Tt0i do

15: for multi-set s = (s1, s2 . . . , sd) with si at level L
c of Ts0i do

16: ZFP decompress K(t, s) and compute Gt,s = K(t, s)×d+1,d+2,...,2d Ft,s

17: end for
18: end for
19: (3) Multiply with Ut,k

τ,ν and Pt,kτ,ν :
20: for level l = Lc, . . . , 0 do
21: for multi-set t = (t1, t2, . . . , td) with ti at level L

c of Tt0i do

22: for multi-set ν = (ν1, ν2, . . . , νd) with νi at level l of Ts0i do
23: if l = 0 then . Compute and return G
24: G(t, 1 : nv) = Gt,ν

∏d
k=1×kU

t,k

25: else
26: Gt,pν += Gt,ν

∏d
k=1×kdiagτ (P

t,k
τ,ν) . τ at level Lc − l of Ttk

27: end if
28: end for
29: end for
30: end for

Here we have assumed a = m1√
2n

. Note that rm is a constant independent of n, and536

therefore the matrix CLR property holds true.537

• Tensor butterfly rank: Consider an L-level tensor butterfly factorization of K. We538

just need to check the tensor rank, e.g., the rank of the mode-4 unfolding of the539

corresponding subtensors at Step (1) of Algorithm 3.1, as the unfolding for the540

other modes can be investigated in a similar fashion. Figure 3.3(a) shows an exam-541

ple of L = 2, where the target and source domains are partitioned at l = 0 (top)542

and l = Lc = 1 (bottom) at Step (1) of Algorithm 3.1. Consider a multi-set pair543

(τ , sk←ν) with k = 4 required by the tensor CLR property in (3.6). Figure 3.3(a)544

highlights in orange one multi-set pair at l = 0 (top) and one multi-set pair at545

l = Lc (bottom). Mode 4 is highlighted in green (in all subfigures of Figure 3.3),546

which needs to be skeletonized by ID. By (3.16), the rank of the matricization of547
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mode 2
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Fig. 3.3: Illustration of the tensor CLR property with L = 2 for a 4-mode ten-
sor representing free-space Green’s function interactions between parallel facing unit
square plates. (a) The target and source domains are partitioned at l = 0 (top)
and l = Lc = 1 (bottom) with a multi-set pair (τ , sk←ν) highlighted in orange for
the skeletonization along mode 4. The sizes of the nodes are |τ1| = m1,|τ2| = m1,
|s1| = n1 and |ν| = n2. (b) Illustration of the rank of the matricization of K(τ , sk←ν)
used in the matrix butterfly algorithm. Here a is the radius of the sphere enclosing the
target domain of physical sizes m1δx ×m2δy. θ ≈ n1

nρmin
, φ ≈ n2

nρmin
, and the product

θφ represents the solid angle covered by the source domain as seen from the center of
the target domain. (c) Illustration of the rank of the mode-4 unfolding of K(τ , sk←ν)
used in the tensor butterfly algorithm. Here, a′ is the radius of the sphere enclosing
the enlarged target domain. The source domain is reduced to a line segment of length
n2δy.

K(τ , sk←ν) is no longer a constant as the tensor butterfly algorithm needs to keep548

n1 = |s1| = n/2L
c

(see Figure 3.3(b)). However, due to translational invariance549

of the free-space Green’s function, i.e., K(xi, yj) = K(x̃, ỹ), where x̃ = (0, i2n , 0),550

ỹ = ( j1−i1n , j2n , ρmin), the mode-4 unfolding of K(τ , sk←ν) is the matrix represent-551

ing the Green’s function interaction between an enlarged target domain of sizes552

(m1 + n1)δx ×m2δy and a source line segment of length n2δy. Therefore its rank553

(hence the tensor rank) can be estimated as554

(3.18) rt ≈ ωa′φ+∆ε ≈
ωa′n2

nρmin
+∆ε ≤

√
2Cb

Cpρmin
+∆ε,555

where a′ is the radius of the sphere enclosing the enlarged target domain and ωa′

ρmin
556

approximately represents the Nyquist sampling rate on the source line segment.557

The last inequality is a result of a′ ≈ m1+n1√
2n
≤
√

2m1

n and m2n2 = Cbn. Here, the558

critical condition n1 ≤ m1 is a direct result of the setup of the tensor CLR in (3.6):559

l ≤ Lc and n1 = |s1| = n/2L
c

(i.e., s1 is fixed as the middle level set as l changes).560

One can clearly see from (3.18) that rt is independent of n, and thus the tensor561

CLR property holds true.562

We remark that the tensor butterfly rank rt in (3.18) is significantly smaller563

than the matrix butterfly rank rm in (3.17) with rt ≈ 2
√
rm. One can perform similar564

analysis of rm and rt for different geometrical settings, such as a pair of well-separated565

3D unit cubes, or a pair of co-planar 2D unit-square plates. We leave these exercises566
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to the readers.567

Discrete Fourier Transform. Our second example is the high-dimensional discrete568

Fourier transform (DFT) defined by569

(3.19) K(i, j) = exp(2πixi · yj)570

with xi = (i1 − 1, i2 − 1, . . . , id − 1) and yj = ( j1−1
n , j2−1

n , . . . , jd−1
n ). We first notice571

that, since572

(3.20) exp(2πixi · yj) =

d∏
k=1

exp

(
2πi(ik − 1)(jk − 1)

n

)
,573

to carry out arbitrary high-dimensional DFTs one can simply perform 1D DFTs one574

dimension at a time (while fixing the indices of the other dimensions) by either 1D575

FFT or 1D matrix butterfly algorithms. We choose the 1D butterfly approach as our576

reference algorithm. For each node pair at dimension k discretized into a mk × nk577

matrix, we assume that mknk = Cbn. It has been proved in [8, 70] that this leads to578

the matrix CLR property and each 1D DFT (fixing indices in other dimensions) can579

be computed by the matrix butterfly algorithm in O(n log n) time with a constant580

butterfly rank rm. Overall this approach requires O(dnd log n) operations.581

In contrast, the tensor butterfly algorithm relies on direct compression of e.g.,582

mode-k unfolding of subtensors K(τ , sk←ν). Consider any submatrix Ksub ∈ Cmk×nk583

of this unfolding matrix K(k); by fixing ip and jp with p 6= k, its entry is simply584

exp

(
2πi(ik − 1)(jk − 1)

n

)
585

scaled by a constant factor586 ∏
p 6=k

exp

(
2πi(ip − 1)(jp − 1)

n

)
587

of modulus 1. Therefore the tensor butterfly rank is588

(3.21) rt = rank(K(k)) = rank(Ksub) = rm.589

The tensor CLR property thus holds true, and the tensor rank is exactly the same as590

the 1D butterfly algorithm per dimension. However, as we will see subsection 3.2.2,591

our tensor butterfly algorithm yields a linear instead of quasi-linear CPU complexity592

for high-dimensional DFTs.593

3.2.2. Complexity Analysis. Here we provide an analysis of computational594

complexity and memory requirement of the proposed construction algorithm (Al-595

gorithm 3.1) and contraction algorithm (Algorithm 3.2), assuming that the tensor596

butterfly rank rt is a small constant and d > 1. Recall that the 2d-mode tensor K597

has size n and a binary tree (Tt0k or Ts0k) of L levels along each mode k. Lc = L/2598

denotes the middle level. We refer the readers to Table 2.1 to recall the notations of599

the multi-set, kth set, mid-level subtensor, transfer matrix, and interpolation matrix,600

etc.601

At Step (1) of Algorithm 3.1, each level 1 ≤ l ≤ Lc has #s = O(
√
n
d
), #τ = 2dl,602

#ν = O(
√
n/2l) for each mode k ≤ d. Each Ws,k

τ ,ν requires O(r2
t ) storage, and603
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O(r2d+1
t ) computational time when proxy indices τ̂ , ŝ are being used. The storage604

requirement and computational cost for Ws,k
τ ,ν are:605

memW =

Lc∑
l=1

dO(
√
n
d
)2dlO(

√
n/2l)O(r2

t ) = O(dndr2
t ),(3.22)606

timeW =

Lc∑
l=1

dO(
√
n
d
)2dlO(

√
n/2l)O(r2d+1

t ) = O(dndr2d+1
t ).(3.23)607

608

One can easily verify that the computation and storage of Vs,k
τ ,ν at l = 0 is less609

dominant than Ws,k
τ ,ν at l > 0 and we skip its analysis.610

At Step (2) of Algorithm 3.1, we have #s = O(
√
n
d
) and #t = O(

√
n
d
), and611

each K(t, s) requires O(r2d
t ) computation time and storage units (even if it is further612

ZFP compressed to reduce storage requirement), which adds up to613

memK = O(
√
n
d
)O(
√
n
d
)O(r2d

t ) = O(ndr2d
t ),(3.24)614

timeK = O(
√
n
d
)O(
√
n
d
)O(r2d

t ) = O(ndr2d
t ).(3.25)615616

Step (3) of Algorithm 3.1 has similar computational cost and memory requirement617

to Step (1) when contracting with the intermediate matrices Pt,kτ,ν , with memP ∼618

memW and timeP ∼ timeW .619

Overall, Algorithm 3.1 requires620

mem = memW + memK + memP = O(ndr2d
t ),(3.26)621

time = timeW + timeK + timeP = O(dndr2d+1
t ).(3.27)622623

Following a similar analysis, one can estimate the computational cost of Algo-624

rithm 3.2 as O(ndr2d
t nv), which is essentially of the similar order as mem of Algo-625

rithm 3.1, except an extra factor nv representing the size of the last dimension of the626

input tensor.627

One critical observation is that the time and storage complexity of the tensor628

butterfly algorithm is linear in nd with smaller ranks rt, while that of the matrix629

butterfly algorithm is quasi-linear in nd with much larger ranks rm. This leads to a630

significantly superior algorithm, as will be demonstrated with the numerical results631

in section 4. That being said, one can verify that there is no difference between the632

two algorithms when d = 1.633

3.2.3. Comparison with Tucker-ID and QTT. Here we make a comparison634

of the computational complexities of the matrix butterfly algorithm, tensor butterfly635

algorithm, Tucker-ID and QTT for several frequently encountered OIOs with d = 2, 3,636

namely Green’s functions for high-frequency wave equations (where d = 2 represents637

two parallel facing unit square plates and d = 3 represents two separated unit cubes),638

Radon transforms (a type of Fourier integral operators), and DFT. We first summarize639

the computational complexities of the factorization and application of matrix and640

tensor butterfly algorithms in Table 3.1. Here we use r to denote the maximum rank641

of the submatrices or (unfolding and matricization of) subtensors associated with each642

algorithm. In other words, we drop the subscript of rm and rt in this subsection. We643

note that r = O(1) for butterfly algorithms, and the computational complexity for644

matrix and tensor butterfly algorithms is, respectively, O(dnd log n) and O(dnd), for645

all OIOs considered here.646
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Factor time Apply time r
Algorithm d = 2 d = 3 d = 2 d = 3 d = 2 d = 3

Tensor butterfly n2 n3 n2 n3 1 1
Matrix butterfly n2 log n n3 log n n2 log n n3 log n 1 1

Tucker-ID n4 n4 − n6∗ n4 n4 − n6∗ n n
QTT (Green&Radon) n3 log n n3 log n n4 log n n5 log n n n

QTT (DFT) log n log n n2 log n n3 log n 1 1

Table 3.1: CPU complexity of the tensor butterfly algorithm, matrix butterfly algo-
rithm, Tucker-ID and QTT when applied to high-frequency Green’s functions (d = 2
represents two parallel facing unit square plates and d = 3 represents two separated
unit cubes), DFT and Radon transforms. Here we assume that tensor butterfly, ma-
trix butterfly and Tucker-ID algorithms use proxy indices, and the QTT algorithm
uses TT-cross. The big O notation is assumed. *: for d = 3, the complexity of
Tucker-ID is n6 for Radon transform and DFT, and n4 for Green’s function.

The Tucker-ID algorithm in subsection 3.1 (even with the use of proxy indices647

to accelerate the factorization), always leads to r = O(n) for OIOs and hence almost648

always O(n2d) factorization and application complexities (see Table 3.1). One excep-649

tion is perhaps the Green’s function for d = 3, where one can easily show that 4 out of650

the 6 unfolding matrices have a rank of O(n) and the remaining 2 have a rank of O(1),651

leading to the O(n4) computational complexity. Overall, we remark that Tucker-type652

decomposition algorithms are typically the least efficient tensor algorithms for OIOs.653

The QTT algorithm, on the other hand, is a more subtle algorithm to compare654

with. Assuming that the maximum rank among all steps in QTT is r, we first summa-655

rize the computational complexities of the factorization and application of QTT. For656

factorization, we only consider the TT-cross type of algorithms, which yields the best657

known computational complexity among all TT-based algorithms. The computational658

complexity of TT-cross is O(dr3 log n) [14, 57]. Once factorized, the application cost659

of the QTT factorization with a full input tensor is O(dr2nd log n) [14]. This com-660

plexity can be reduced to O(dr2r2
i log n) when the input tensor is also in the QTT661

format with TT rank ri. However, an arbitrary input tensor can have a TT rank up662

to ri = O(nd/2) (which leads to the same application cost as contraction with a full663

input tensor). Therefore in our comparative study, we stick with the O(dr2nd log n)664

application complexity.665

For high-frequency Green’s functions and general-form Fourier integral operators666

(e.g. Radon transforms), the TT rank in general behaves as r = O(n) [14], leading667

to a factorization cost of O(dn3 log n) and an application cost of O(dn2+d log n), as668

detailed in Table 3.1. It is worth mentioning that, treating DFTs as a special type669

of Fourier integral operators, QTT can achieve r = O(1) when a proper bit-reversal670

ordering is used [9], leading to a factorization cost of O(d log n) and an application671

cost of O(dnd log n), as shown in Table 3.1. In contrast, the proposed tensor butterfly672

algorithm can always yield O(dnd) factorization and O(nd) application costs.673

4. Numerical Results. This section provides several numerical examples to674

demonstrate the accuracy and efficiency of the proposed tensor butterfly algorithm675

when applied to large-scale and high-dimensional OIOs including Green’s function676

tensors for high-frequency Helmholtz equations (subsection 4.1), Radon transform677

tensors (subsection 4.2), and high-dimensional DFTs (subsection 4.3). We compare678
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our algorithm with a few existing matrix and tensor algorithms including the matrix679

butterfly algorithm in subsection 2.2, the Tucker-ID algorithm in subsection 3.1, the680

QTT algorithm [57], the FFT algorithm implemented in the heFFTe package [1], and681

the non-uniform FFT (NUFFT) algorithm implemented in the FINUFFT package682

[2]. All of these algorithms except for Tucker-ID (sequential implementation in For-683

tran2008 via the ButterflyPACK package [46]) and FINUFFT (Python interface to684

the C backend with shared-memory parallelism) are tested in distributed-memory par-685

allelism. The reference binary-tree-based matrix butterfly algorithm in subsection 2.2686

is implemented in Fortran2008 with distributed-memory parallelism [47], available in687

the ButterflyPACK package [46]. The proposed tensor butterfly algorithm is also688

available in the ButterflyPACK package with distributed-memory parallelism (which689

will be described in detail in a future paper). The matrix and tensor butterfly al-690

gorithms leverage ZFP to further compress the middle-level submatrices and subten-691

sors, respectively. It is worth noting that currently there is no single package that692

can both compute and apply the QTT decomposition in distributed-memory parallel-693

ism. In our tests, we perform the factorization using a distributed-memory TT code694

(fully Python) [63] that parallelizes a cross interpolation algorithm [19], and then we695

implement the distributed-memory QTT contraction via the CTF package (Python696

interface to the C++ backend) [64]. All experiments are performed using 4 CPU697

nodes of the Perlmutter machine at NERSC in Berkeley, where each node has two698

64-core AMD EPYC 7763 processors and 128GB of 2133MHz DDR4 memory.699

4.1. Green’s functions for high-frequency Helmholtz equations. In this700

subsection, we consider the tensor discretized from 3D free-space Green’s functions701

for high-frequency Helmholtz equations. Specifically, the tensor entry is702

K(i, j) =
exp(−iωρ)

ρ
, ρ = |xi − yj |,(4.1)703

where ω represents the wave number. Two tests are performed: (1) A 4-way tensor704

representing the Green’s function interaction between two parallel facing unit plates705

with distance 1, i.e., xi = ( i1n ,
i2
n , 0), yj = ( j1n ,

j2
n , 1), and d = 2. (2) A 6-way tensor706

representing the Green’s function interaction between two unit cubes with the distance707

between their centers set to 2, i.e., xi = ( i1n ,
i2
n ,

i3
n ), yj = ( j1n ,

j2
n ,

j3
n +2), and d = 3. For708

both tests, the wave number is chosen such that the number of points per wave length709

is 4, i.e., 2πn/ω = 4 or Cp = 2/π. We first perform compression using the tensor710

butterfly, Tucker-ID and QTT algorithms, and then perform application/contraction711

using a random input tensor F . We also add results for the matrix butterfly algorithm712

using the corresponding matricization of K and F .713

Figure 4.1 (left) shows the factorization time, application time and memory usage714

of each algorithm using a compression tolerance ε = 10−6 for the parallel plate case.715

For QTT, we show the memory of the factorization (labeled as “QTT(Factor)”) and716

application (labeled as “QTT(Apply)”) separately. Note that although QTT factor-717

ization requires sub-linear memory usage, QTT contraction becomes super-linear due718

to the full QTT rank of the input tensor. Overall, we achieve the expected com-719

plexities listed in Table 3.1 for the butterfly and Tucker-ID algorithms. For QTT,720

however, instead of an O(n) rank scaling, we observe an O(n3/4) rank scaling, leading721

to slightly better complexities compared with Table 3.1. We leave this as a future722

investigation. That said, the tensor butterfly algorithm achieves the linear CPU723

and memory complexities for both factorization and application with a much smaller724

prefactor compared to all the other algorithms. Remarkably, the tensor butterfly al-725
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Fig. 4.1: Helmholtz equation: Computational complexity comparison among butterfly
matrix, butterfly tensor, Tucker-ID and QTT for compressing (left) a 4-way Green’s
function tensor for interactions between two parallel 2D plates and (right) a 6-way
Green’s function tensor for interactions between two 3D cubes. The geometries are
discretized with 4 points per wavelength. (Top): Factor time. (Middle): Factor and
apply memory. (Bottom): Apply time. The largest data points correspond to 8192
wavelengths per direction for the 2D tests (left) and 512 wavelengths per direction for
the 3D tests (right).

gorithm achieves a 30x memory reduction and 15x speedup, capable of handling 64x726

larger-sized tensors compared with the matrix butterfly algorithm.727

Figure 4.1 (right) shows the factorization time, application time and memory728

usage of each algorithm using a compression tolerance ε = 10−2 for the cube case.729

Overall, we achieve the expected complexities listed in Table 3.1 for all four algorithms.730

The tensor butterfly algorithm achieves the linear CPU and memory complexities for731

both factorization and application with a much smaller prefactor compared to all the732

other algorithms. Remarkably, the tensor butterfly algorithm achieves a 30× memory733

reduction and 200x speedup, capable of handling 512× larger-sized tensors compared734

with the matrix butterfly algorithm. The largest data point n = 2048 corresponds735

to 512 wavelengths per physical dimension. The results in Figure 4.1 suggest the736

superiority of the tensor butterfly algorithm in solving high-frequency wave equations737

in 3D volumes and on 3D surfaces.738

Next, we demonstrate the effect of changing compression tolerance ε for both test739
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nd ε rmin r error Tf (sec) Ta (sec) Mem (MB)

163842 1E-02 5 8 1.49E-02 6.83E+01 1.16E+00 2.40E+04
163842 1E-03 6 10 2.19E-03 1.17E+02 1.89E+00 4.69E+04
163842 1E-04 7 11 1.84E-04 1.57E+02 2.80E+00 7.49E+04
163842 1E-05 8 12 3.46E-05 2.29E+02 4.03E+00 1.21E+05
163842 1E-06 9 13 9.26E-06 3.18E+02 5.92E+00 1.96E+05

5123 1E-02 2 5 2.01E-02 1.18E+02 1.42E+00 1.19E+04
5123 1E-03 2 6 1.18E-03 3.46E+02 4.08E+00 4.87E+04
5123 1E-04 2 7 8.39E-05 6.26E+02 9.85E+00 1.49E+05
5123 1E-05 3 8 9.21E-06 1.25E+03 2.40E+01 4.07E+05

Table 4.1: The technical data for a 4-way Green’s function tensor of n = 16384 and
a 6-way Green’s function tensor of n = 512 for the Helmholtz equation using the
proposed tensor butterfly algorithm of varying compression tolerance ε. The table
shows the maximum rank r and minimum rank rmin across all ID operations, relative
error in (4.2), factor time Tf , apply time Ta, and memory usage Mem.

cases in Table 4.1. Here the error is measured by740

error =
||K×d+1,d+2,...,2d Fe −KBF ×d+1,d+2,...,2d Fe||F

||K×d+1,d+2,...,2d Fe||F
(4.2)741

where KBF is the tensor butterfly representation of K, Fe(j) = 1 for a small set of742

random entries j and 0 elsewhere. This way, K does not need to be fully formed to743

compute the error. Table 4.1 shows the minimum rank (rmin) and maximum rank744

(r), error, factorization time, application time and memory usage of varying ε, for745

n = 16384, d = 2 and n = 512, d = 3. We remark that the observed ranks clearly746

demonstrate ∆ε = O(log ε−1) in (3.18). Overall, the errors are close to the prescribed747

tolerances and the costs increase for smaller ε, as expected. We also note that keeping748

r as low as possible is critical in maintaining small prefactors of the tensor butterfly749

algorithm, particularly for higher dimensions.750

4.2. Radon transforms. In this subsection, we consider 2D and 3D discretized751

Radon transforms similar to those presented in [8]. Specifically, the tensor entry is752

K(i, j) = exp(2πiφ(xi, yj))(4.3)753

with xi = ( i1n ,
i2
n , . . . ,

id
n ) and yj = (j1− n

2 , j2−
n
2 , . . . , jd−

n
2 ). For d = 2, we consider754

φ(x, y) = x · y +
√
c21y

2
1 + c22y

2
2 ,(4.4)755

c1 = (2 + sin(2πx1) sin(2πx2))/16,756

c2 = (2 + cos(2πx1) cos(2πx2))/16.757

For d = 3, we consider758

φ(x, y) = x · y + c|y|,(4.5)759

c = (3 + sin(2πx1) sin(2πx2) sin(2πx3))/100.760

We first perform compression using the matrix butterfly, tensor butterfly, and QTT761

algorithms, and then perform application/contraction using a random input tensor762

F .763

23

This manuscript is for review purposes only.



10
4

10
5

10
6

10
7

10
8

10
9

10
0

10
1

10
2

10
3

10
4

T
im

e
 (

S
e
c
)

10
4

10
5

10
6

10
7

10
8

10
9

10
0

10
1

10
2

10
3

10
4

T
im

e
 (

S
e
c
)

10
4

10
5

10
6

10
7

10
8

10
9

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 (

S
e
c
)

10
4

10
5

10
6

10
7

10
8

10
9

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 (

S
e
c
)

10
4

10
5

10
6

10
7

10
8

10
9

10
-2

10
-1

10
0

10
1

10
2

10
3

M
em

o
ry

 (
G

B
)

10
4

10
5

10
6

10
7

10
8

10
9

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

M
em

o
ry

 (
G

B
)

10
4

10
5

10
6

10
7

10
8

10
9

10
-3

10
-2

10
-1

10
0

10
1

10
2

T
im

e
 (

S
e
c
)

10
4

10
5

10
6

10
7

10
8

10
9

10
-3

10
-2

10
-1

10
0

10
1

10
2

T
im

e
 (

S
e
c
)

10
4

10
5

10
6

10
7

10
8

10
9

10
-3

10
-2

10
-1

10
0

10
1

10
2

T
im

e
 (

S
e
c
)

10
4

10
5

10
6

10
7

10
8

10
9

10
-3

10
-2

10
-1

10
0

10
1

10
2

T
im

e
 (

S
e
c
)

Fig. 4.2: Radon transforms: Computational complexity comparison among butterfly
matrix, butterfly tensor and QTT for compressing (left) a 2D Radon transform tensor
and (right) a 3D Radon transform tensor. (Top): Factor time. (Middle): Factor and
apply memory. (Bottom): Apply time.

Figure 4.2 shows the factorization time, application time and memory usage of764

each algorithm using a compression tolerance ε = 10−3 for the 2D transform (left)765

and 3D transform (right). Overall, we achieve the expected complexities listed in766

Table 3.1 for all three algorithms. The QTT algorithm can only obtain the first 2 or767

3 data points due to its high memory usage and large QTT ranks. In comparison,768

the tensor butterfly algorithm achieves the linear CPU and memory complexities for769

both factorization and application with a much smaller prefactor compared to all770

the other algorithms. Note that the Radon transform kernels in (4.4) and (4.5) are771

not translational invariant, but the tensor butterfly algorithm can still attain small772

ranks. As a result, the tensor butterfly algorithm can handle 64x larger-sized Radon773

transforms compared with the matrix butterfly algorithm, showing their superiority774

for solving linear inverse problems in tomography and seismic imaging.775

Next, we demonstrate the effect of changing compression tolerance ε for both test776

cases in Table 4.2 with the error defined by (4.2). Table 4.2 shows the minimum777

and maximum ranks, error, factorization time, application time and memory usage778

of varying ε, for n = 2048 with d = 2 and n = 128 with d = 3, respectively. Overall,779

the errors are close to the prescribed tolerances and the costs increase for smaller ε,780

as expected. Just like the Green’s function example, it is critical to keep r a low781

constant, particularly for higher dimensions.782
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nd ε rmin r error Tf (sec) Ta (sec) Mem (MB)

20482 1E-02 4 18 2.04E-02 9.32E+01 7.20E-01 1.25E+04
20482 1E-03 4 20 1.51E-03 1.61E+02 1.28E+00 2.40E+04
20482 1E-04 4 22 1.49E-04 2.55E+02 2.05E+00 4.26E+04
20482 1E-05 4 23 2.45E-05 3.73E+02 3.12E+00 6.95E+04

1283 1E-02 2 6 4.31E-02 3.89E+01 8.57E-01 1.59E+04
1283 1E-03 2 8 1.00E-02 1.31E+02 3.74E+00 9.44E+04
1283 1E-04 2 9 1.68E-03 2.42E+02 8.28E+00 2.38E+05
1283 1E-05 2 11 1.48E-04 4.30E+02 2.05E+01 6.06E+05

Table 4.2: The technical data for a 4-way Radon transform tensor of n = 2048 in
(4.4) and a 6-way Radon transform tensor of n = 128 in (4.5) using the proposed
tensor butterfly algorithm of varying compression tolerance ε. The table shows the
maximum rank r and minimum rank rmin across all ID operations, relative error in
(4.2), factor time Tf , apply time Ta, and memory usage Mem..

4.3. High-dimensional discrete Fourier transform. Finally, we consider783

high-dimensional DFTs defined as784

K(i, j) = exp(2πixi · yj),(4.6)785

where we choose xi = (i1 − 1, i2 − 1, . . . , id − 1) and yj = ( j1−1
n , j2−1

n , . . . , jd−1
n ) for786

uniform DFTs, and we choose xi to be random (in the sense that xik ∈ [0, n − 1] for787

k ≤ d is a random number) and yj = ( j1−1
n , j2−1

n , . . . , jd−1
n ) for type-2 non-uniform788

DFTs. For high-dimensional DFTs with d = 3, 4, 5, 6, we perform compression using789

the tensor butterfly algorithms (with the bit-reversal ordering for each dimension),790

and perform application/contraction using a random input tensor F . In comparison,791

for d = 3 we perform FFT via the heFFTe package for the uniform DFT example and792

NUFFT via the FINUFFT package for the type-2 non-uniform DFT example.793

Figure 4.3 shows the factorization time for the butterfly algorithm (or equiva-794

lently the plan creation time for heFFTe/FINUFFT), application time and memory795

usage of each algorithm using a compression tolerance ε = 10−3 (for butterfly and796

FINUFFT) for the uniform (left) and nonuniform (right) transforms. Overall, the ten-797

sor butterfly algorithm can obtain O(nd) CPU and memory complexities compared798

with the O(nd log n) complexities of FFT and NUFFT. It is also worth mentioning799

that QTT can attain logarithmic-complexity uniform DFTs [9] when the input tensor800

F is also in the QTT form with low TT ranks. However, for a general input ten-801

sor, the complexity of QTT falls back to O(nd log n). Although the proposed tensor802

butterfly algorithm can obtain the best computational complexity among all existing803

algorithms, we observe that for the d = 3 case, FFT or NUFFT shows a memory804

usage similar to the tensor butterfly algorithm but much smaller prefactors for plan805

creation and application time. That said, the tensor butterfly algorithm provides806

a unique capability to perform higher dimensional DFTs (i.e., d ≥ 4) with optimal807

asymptotic complexities.808

5. Conclusion. We present a new tensor butterfly algorithm efficiently com-809

pressing and applying large-scale and high-dimensional OIOs, such as Green’s func-810

tions for wave equations and integral transforms, including Radon transforms and811

Fourier transforms. The tensor butterfly algorithm leverages an essential tensor CLR812
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Fig. 4.3: Fourier transforms: Computational complexity of (left) butterfly tensor and
heFFTe for compressing the high-dimensional DFT tensor and (right) butterfly tensor
and FINUFFT for compressing the high-dimensional NUFFT tensor. (Top): Factor
time of butterfly tensor and plan creation time for heFFTe/FINUFFT. (Middle):
Factor memory. (Bottom): Apply time.

property to achieve both improved asymptotic computational complexities and lower813

leading constants. For the contraction of high-dimensional OIOs with arbitrary input814

tensors, the tensor butterfly algorithm achieves the optimal linear CPU and memory815

complexities; this is in huge contrast with both existing matrix algorithms and fast816

transform algorithms. The former includes the matrix butterfly algorithm, and the817

latter contains FFT, NUFFT, and other tensor algorithms such as Tucker-type de-818

compositions and QTT. Nevertheless, all these algorithms exhibit higher asymptotic819

complexities and larger leading constants. As a result, the tensor butterfly algorithm820

can efficiently model high-frequency 3D Green’s function interactions with over 512×821

larger problem sizes than existing butterfly algorithms; for the largest sized tensor822

that can be handled by existing algorithms, the tensor butterfly algorithm requires823

200× less CPU time and 30× less memory than existing algorithms. Moreover, it824

can perform linear-complexity Radon transforms and DFTs with up to d = 6 di-825

mensions. These OIOs are frequently encountered in the solution of high-frequency826

wave equations, X-ray and MRI-based inverse problems, seismic imaging and signal827

processing; therefore, we expect the tensor butterfly algorithm developed here to be828

both theoretically attractive and practically useful for many applications.829

The limitation of the tensor butterfly algorithm is the requirement for a tensor830
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grid, and hence its extension for unstructured meshes will be a future work. Also, the831

mid-level subtensors represent a memory bottleneck and need to be compressed with832

more efficient algorithms.833
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