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Abstract

We compare the performance of three butterfly-accelerated
direct integral and differential equation solvers for mod-
eling high-frequency time-harmonic electromagnetic inter-
action with inhomogeneous dielectrics. The three solvers
are based on finite-difference frequency-domain (FDFD)
method, volume integral equation (VIE), and Babich
expansion-based surface integral equation (SIE), respec-
tively. Despite of the reduced complexity with butter-
fly acceleration, numerical examples demonstrate that each
solver shows distinct characteristics in terms of accuracy,
computational efficiency and applicability.

1 Introduction

Full-wave numerical methods for computing electromag-
netic fields inside inhomogeneous dielectric objects are typ-
ically based on differential or integral equations. Differ-
ential equation methods, such as finite element (FE) [1]
and finite-difference frequency-domain (FDFD) [2] meth-
ods, discretize the wave equation in the computation do-
main with proper absorbing boundary conditions, and lead
to sparse linear systems. In contrast, integral equation
methods, such as volume integral equation (VIE) [3, 4, 5],
volume surface integral equation [6, 7], and high-frequency
asymptotic [8, 9] methods, rely on Green’s function prop-
agators without the need of artificial boundary conditions,
and lead to dense linear systems. These sparse and dense
systems can suffer from high-contrast ill-conditioning,
high-frequency ill-conditioning, and/or numerical disper-
sion, and direct methods are often preferable. However,
the computational costs of direct methods typically scale
as O(N2) and O(N3) respectively for sparse and dense lin-
ear systems in 3D, where N is the number of degrees of
freedom in the volume.

Many fast rank-structured direct solvers have been devel-
oped to model waves in inhomogeneous dielectrics. For
sparse linear systems, multifrontal methods with low-rank
hierarchical matrix representations [10, 11, 12] have been
developed; for dense linear systems, H matrices [13, 14],
H 2 matrices [15, 16, 17], and skeletonization [18, 19, 20]
have been considered. The computational costs of these
methods are shown to scale as O(N) in the low- to medium-
frequency regime. However, these low-rank based sparse

and dense linear solvers tend to be less efficient in the high-
frequency settings. Recently, a new class of direct solvers
based on the butterfly representation (see [21] and refer-
ences therein), called hierarchically off-diagonal butterfly
(HODBF) format [22], have been developed to show re-
duced complexities for surface integral equations (SIE) and
have been extended to handle inhomogeneous dielectrics in
high-frequency ranges. Examples include HODBF-based
sparse multifrontal solvers for FE and FDFD systems [23],
HODBF-based VIE solvers [24] and HODBF-based Babich
SIE solvers [25]. Many of these solvers have been shown
to scale quasi-linearly despite of the frequency range of in-
terest. That said, their computational efficiency, accuracy
and applicability are vastly different, and extra caution is
required to choose the appropriate one in practice.

In this paper, we present some performance studies, includ-
ing efficiency, accuracy and applicability, using the above-
mentioned butterfly-based solvers for the computation of
high-frequency electromagnetic fields inside an inhomoge-
neous dielectric object residing in 2D free space. Despite of
efficiency/accuracy/applicability advantages of each solver,
our numerical results show that: 1. the sparse FDFD solver
suffers from numerical dispersion when at scale, and re-
quires at least 50 points per wavelength (PPW) to achieve a
reliable solution; 2. the VIE solver shows a complexity that
is sub-optimal compared to the other solvers; 3. the Babich
expansion-based solver requires smooth dielectric profiles
that do not permit occurrence of caustics. These studies
provide guidance on the choice of appropriate solver de-
pending on the specific application need.

2 Butterfly-enhanced Direct Solvers for In-
homogeneous Dielectrics

For simplicity, we assume that an dielectric object with
permittivity εr(r) and compact support V , residing in free
space R2, is excited by an arbitrary time-harmonic source
s(r) outside V , with free space wave number k0. The fields
inside V , u(r), satisfy the Helmholtz equation:

[∇2 + k2
0εr(r)]u(r) =−s(r) in R2, (1)

Next we summarize the three butterfly-enhanced direct
methods for solving (1).



2.1 FDFD and sparse multifrontal solver

The FDFD method [2] discretizes (1) in the computation
domain with perfectly matching layers, using N f d = n2 uni-
form Cartesian grids with 9-point finite-difference stencils.
The resulting N f d × N f d sparse linear system is directly
factorized using the butterfly-enhanced multifrontal solver
[23]. Based on the fill-in reduction ordering, this solver
generates a graph called the assembly tree to guide the LU
factorization on the re-ordered matrix. Each node of the
assembly tree corresponds to a dense frontal matrix, rep-
resenting an intermediate dense submatrix in sparse Gaus-
sian elimination. The factorization of the sparse matrix is
cast into a series of partial factorizations and Schur comple-
ment updates of the frontal matrices. As the frontal matrices
represent numerical Green’s function interactions between
the geometrical seperators, large frontal matrices and their
arithmetic operations are represented using the HODBF
format [22]. The computational complexity of the resulting
solver scales as O(N f d). Despite of its optimal computa-
tional complexity and wide applicability, the FDFD solver
suffers from numerical dispersion and requires high PPW
to handle large-scale systems reliably. These features are
summarized in Table 1.

Table 1. Performance summary of three butterfly-enhanced
direct solvers for 2D electromagnetic analysis.

FDFD VIE Babich-based SIE
System size to invert N f d > N Nv = N Ns = O(N0.5)

CPU time O(N) O(N1.5 logN) O(N)
PPW >50 5-10 5-10

Permittivity arbitrary arbitrary smooth

2.2 VIE method

The VIE converts (1) to an integral form

u(r) = ui(r)+
∫

V
dr′g0(r,r′)k2

0[εr(r′)−1]u(r′) (2)

where ui is the incident fields generated by source s, and
g0(r,r′) is the free-space Green’s function. The VIE solver
discretizes u(r′) in V with Nv =N piece-wise constant basis
functions, leading to a dense N×N system. The butterfly-
enhanced VIE solver [24] for 3D geometries compresses
and inverts the system using the HODBF format. Here we
apply it to the 2D setting of (1). Due to the need of in-
verting the large linear system, the computational cost of
the butterfly-enhanced VIE solver scales sub-optimally as
O(N1.5 logN) (see Table 1). That said, the VIE solver does
not suffer from numerical dispersion (i.e. PPW=5-10 is suf-
ficient), and applies to arbitrary dielectric profiles.

2.3 Babich expansion-based SIE method

For smooth analytic media that does not permit caustics,
the Green’s function can be directly constructed via the

Hadamard-Babich ansatz [25]:

ghb(r,r′) =
nb

∑
s=0

vs(r,r′) fs(k0,τ), (3)

fs(k0,τ) = i
√

π

2
eisπ

(
2τ

k0

)s

H(1)
s (k0τ). (4)

Here, H(1)
s is the s-th Hankel function of the first kind,

vs(r,r′) and τ(r,r′) are the amplitude and phase functions
satisfying the transport equation and the eikonal equation
with point source, respectively. Typically a two-term ex-
pansion with nb = 1 is a good approximation of the true
Green’s function g(r,r′) for inhomogeneous media at high
frequencies. In [25], the phase and amplitude functions τ ,
v0, v1 are first tabulated by solving eikonal and transport
equations with judiciously selected point sources. Once
tabulated, they are fed into the butterfly compression algo-
rithms for representing block-wise interactions via (3).

Here we extend its usage to modeling inhomogeneous di-
electrics in free space. Similar to the SIE method to handle
homogeneous dielectrics, here we replace the free-space
Green’s function in the interior domain with the Babich
ansatz (3). Therefore one only need to discretize the ∂V
with Ns = O(N0.5) basis functions, leading to a dense
Ns × Ns system whose HODBF-based inversion requires
O(N0.75 logN) time. To compute fields everywhere inside
V , the IE operator that maps equivalent source on ∂V to
fields in V is also butterfly compressed, requiring O(N)
CPU time. Just like the VIE method, the Babich-based SIE
method only requires PPW=5-10. That said, its applicabil-
ity to general volumetric scatterers remains an open prob-
lem (See Table 1).

3 Numerical Results

In this section, we present one numerical example that
demonstrates the accuracy and efficiency of the aforemen-
tioned butterfly-based solvers. The computation domain
is [0,1]2 with background media ε0 = 4. The volumet-
ric scatterer V is a square with side length 0.6 and center
[0.325,0.325]. The dielectric profile is εr(x,y) = (0.625−
0.25y)−2 for [x,y]∈V . Note that εr(x,y) is analytical, hence
all three solvers can be used here. The background wave
number is set to k0 = 50π , and accordingly the computa-
tion domain spans about 50 wavelengths in each direction.
We consider two source functions, a point source s(r) =
δ (r,rc) with rc = [0.85,0.85], and a Gaussian wavepacket
source s(r) = exp(−|r− rc|2/(2σ2))exp(ik0(r · d)) with
σ = 0.15 and d= 1√

2
[1,1]. The FDFD solver uses PPW=10

and 50, leading to linear systems of size N f d = 1,742,400
and 43,560,000, respectively; the VIE solver uses PPW=10
leading to Nv = 90,000 volumetric unknowns; the Babich-
SIE solver uses PPW=10 leading to Ns = 2,400 surface un-
knowns. All solvers leverage the HODBF format supported
in the open-source software package ButterflyPACK [26].
All tests are performed on the Haswell nodes of the Cori
machine, a Cray XC40, at NERSC in Berkeley.



The fields computed by the three solvers are shown in Fig-
ure 1 (a)-(b). It is clear that the wavelength becomes shorter
at y increases inside V . Figure 1 (c)-(d) demonstrates that
the FDFD solver requires at least PPW=50 for the solution
to agree well with those of the VIE and Babich-SIE solvers,
which only require PPW=10. In addition to the accuracy
comparison, it’s worth mentioning that the system inver-
sion in the VIE and Babich-SIE solvers are quite fast due to
their compact sizes. That said, we expect that the VIE tim-
ing will degrade for much larger sized systems according to
complexity estimates in Table 1. Moreover, if one is inter-
ested in computation of the farfields instead of fields inside
V , the Babich-SIE solver is the fastest (i.e., O(N0.75 logN))
among all three solvers.

(a) (b)

(c) (d)

Figure 1. (a-b): Wavefields u in the computation do-
main with an inhomogeneous dielectric in [0.025,0.625]2

(marked by the black boundary lines) generated by (a)
the point source and (b) the Gaussian wavepacket source.
(c)-(d): Accuracy comparison of the three butterfly-based
solvers: FDFD with PPW=10 and 50, VIE with PPW=10
and Babich-SIE with PPW=10, with fields along y = 0.99
generated from (c) the point source and (d) the Gaussian
wavepacket source.

u(r) = ui(r)+
∫

V
dr′g0(r,r′)ω2[n2(r′)−1]u(r′) (5)

4 Conclusion

We present a preliminary performance study of three
butterfly-enhanced direct solvers, namely FDFD, VIE and
Babich-SIE, for analyzing high-frequency electromagnetic
phenomena involving inhomogeneous dielectrics. Despite
of their favorable computational complexities, the FDFD
solver requires large PPW to compensate for numerical dis-
persion; the VIE solver requires asymptotically the most
expensive computation due to the inversion of large sys-
tems; the Babich-SIE solvers requires the dielectrics to be

smooth and simple. All these constraints need extra cau-
tion for practitioners interested in full-wave simulation of
large-scale inhomogeneous dielectrics.
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