BUTTERFLY FACTORIZATION VIA RANDOMIZED
MATRIX-VECTOR MULTIPLICATIONS*

YANG LIUST, XIN XING!, HAN GUO$, ERIC MICHIELSSEN®, PIETER GHYSELST, AND
XIAOYE SHERRY LI

Abstract. This paper presents an adaptive randomized algorithm for computing the butterfly
factorization of an m X n matrix with m ~ n provided that both the matrix and its transpose can
be rapidly applied to arbitrary vectors. The resulting factorization is composed of O(logn) sparse
factors, each containing O(n) nonzero entries. The factorization can be attained using O(n3/2logn)
computation and O(n logn) memory resources. The proposed algorithm can be implemented in par-
allel, and can apply to matrices with strong or weak admissibility conditions arising from surface in-
tegral equation solvers as well as multi-frontal-based finite-difference, finite-element, or finite-volume
solvers. A distributed-memory parallel implementation of the algorithm demonstrates excellent scal-
ing behavior.

Key word. Matrix factorization, butterfly algorithm, randomized algorithm, integral operator.

AMS subject classifications. 15A23, 65F50, 65R10, 65R20

1. Introduction. Butterfly factorization is an important tool for compressing
highly oscillatory operators arising in many scientific and engineering applications,
such as the integral-equation-based analysis of high-frequency acoustic and electro-
magnetic scattering problems [25], the evaluation of Fourier integrals and trans-
forms [2,33], spherical harmonic transforms [1,31], and other types of special function
transforms [27]. The butterfly factorization of a m x n matrix with m &~ n exists
provided that all judiciously selected submatrices, whose row and column dimen-
sions multiply to O(n), are numerically low-rank. Note that the submatrices can be
non-contiguous if its rows and columns are not properly ordered. Through recursive
low-rank factorizations of these submatrices, the operator can be represented as the
product of O(logn) sparse matrices, each containing O(n) nonzero entries. The re-
sulting factorization can be rapidly applied to arbitrary vectors using only O(nlogn)
computation and memory resources.

Despite this favorable application cost, the cost of constructing a butterfly rep-
resentation of a given operator typically scales at least as O(n?) [31]. Fortunately,
there exist two important categories of operators that allow for fast approximation
by a butterfly. (i) Operators that allow each element of their matrix representation
to be evaluated in O(1) operations. This is typically the case when the butterfly
factorization applies directly to an oscillatory operator with an explicit formula (e.g.,
Fourier operators, special transforms, or discretized integral equations) or stored as a
full matrix. (ii) Operators (and their adjoints) with matrix representations that can
be applied to arbitrary vectors in quasi-linear, typically O(nlogn), complexity. This
situation typically arises when re-compressing the composition of highly-oscilatory op-
erators, e.g., composition of Fourier integrals [12,14], matrix algebras for constructing
discretized inverse integral operators [7]), compression of frontal matrices in multi-
frontal sparse solvers [19], and conversion to a butterfly representation from other

*Version of November 11, 2020.

fComputational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (li-
uyangzhuan@lbl.gov, pghysels@lbl.gov, xsli@lbl.gov,).

£School of Mathematics, Georgia Institute of Technology, GA (xxing33@gatech.edu).

$Department of Electrical Engineering and Computer Science, University of Michigan, MI
(hanguo@umich.edu, emichiel@umich.edu).

This manuscript is for review purposes only.

mailto:liuyangzhuan@lbl.gov
mailto:liuyangzhuan@lbl.gov
mailto:pghysels@lbl.gov
mailto:xsli@lbl.gov
mailto:xxing33@gatech.edu
mailto:hanguo@umich.edu
mailto:emichiel@umich.edu

S S G S e e e L T
O © 0 N O Ut ke W N

ot

Y O s W N =

J

ARG)|
(e}

76

85
86
87
88
89
90
91

compression formats (e.g, fast multipole methods (FMM)-like formats). Before sum-
marizing the key features of algorithms available in these categories, it is worth men-
tioning that this paper focuses on the development of fast butterfly algorithms for
operators in category (ii).

The butterfly factorization of matrices in category (i) can be constructed using
O(nlogn) computation and memory resources following the low-rank decomposition
of judiciously selected submatrices using uniform [25], random [24], or Chebyshev

[13, 28] proxy points. A wide variety of low-rank decompositions, including the
interpolative decomposition (ID) [13,28], the pseudo skeleton approximation [24],
the adaptive cross approximation [30], and singular value decomposition (SVD) [14]
can be used for this purpose. This type of butterfly factorization has been extended
to multi-scale and multi-dimensional problems [15, 16, 25].

Operators in category (ii), on the other hand, post bigger challenges to fast butter-
fly construction algorithms. Existing algorithms [8,14,32] rely on random projection-
based algorithms [9,17] to construct low-rank decompositions of the associated sub-
matrices, typically resulting in higher computation and memory costs than those in
category (i). First, optimal-complexity (i.e., O(nlogn)) algorithms exist when the os-
cillatory operator allows for smooth phase recovery [32] or fast submatrix-vector mul-
tiplications (e.g., using FMM-type algorithms). Unfortunately, these requirements are
not met when compressing the concatenation of several Fourier operators or inverting
integral equation operators. In addition, the iterative algorithm in [8] only exhibits
rapid convergence for butterflies with a small number of levels. In comparison, the
non-iterative algorithms in [8,14] apply to butterfly compressible matrices with arbi-
trary levels, but require O(nS/ 2logn) computation resources due to the multiplication
with multiple structured random matrices to address the specific submatrices, sim-
ilar to the peeling algorithm in [18] for constructing H—matrices. Specifically, the
algorithm in [14] first constructs the innermost factor via randomized SVD and then
moves towards the outermost factors using deterministic SVDs. This algorithm un-
fortunately requires O(ns/ 2) storage due to the need to store information associated
with all random vectors. In contrast, the algorithm in [8] changes the computation
sequence to an outside-in strategy and constructs every butterfly factor with ran-
domized SVD. Despite having a slightly higher computational cost, this algorithm
algorithm requires only O(nlogn) storage as it only stores information related to
subsets of the structured random matrices.

This paper presents an improved butterfly reconstruction scheme based on the
O(n3/?logn) computation and O(nlogn) memory algorithm of [8]: (i) The new al-
gorithm leverages an improved adaptive scheme that permits fast and accurate but-
terfly reconstructions for matrices with non-constant butterfly ranks arising from the
discretization of 3D surface integral equation solvers with weak admissibility. The al-
gorithm in [8] expressly was designed for butterflies with constant rank, and exhibits
higher computational costs when applied to cases with non-constant ranks. (ii) The
algorithm comes with a rigorous error bound obtained using an orthogonal projec-
tion argument that grows only weakly with matrix size. The previous algorithm, in
contrast, does not allow for the development of a rigorous bound as it uses random
initial guesses for the butterfly factors to propagate the multiplication results towards
the innermost factors. (iii) The algorithm can be deployed on distributed-memory
computers. The previous algorithm, in contrast, is inherently sequential in nature,
limiting its scalability when used in (even parallel) H—matrix solvers [8]. The pro-
posed algorithm represents a critical building block for constructing fast iterative and
direct solvers for highly-oscillatory problems.

2

This manuscript is for review purposes only.

108
109
110

112
113
114

115
116
117
118
119
120
121
122
123
124

2. Preliminary background.

2.1. Notation. We use MATLAB notation to denote entries and subblocks of
matrices and vectors. For example, A(7,j) denotes the (i,7)th entry of matrix A,
and A(I,J) with index sets I and J denotes the subblock of matrix A with rows and
columns indexed by I and J, respectively. We let diag(Ay,..., Ax) denote a block
diagonal matrix with blocks Ay, ..., Ax on the diagonal. We always assume A € R™*"™
and it is straightforward to extend all the following discussions to complex matrices.

2.2. Low-rank approximation by projection. Given a matrix A € R™*",
we consider a rank-r approximation of A in the projection form,

A~ UUTA,

where U € R™*" has orthonormal columns and the symbol “T” denotes the transpose
of a matrix. The product UU T projects all the columns of A onto the column space
of U, denoted by col(U), which is of dimension r. Such a basis matriz U can be
computed via SVD, pivoted QR, or randomized methods [17]. In this paper, we focus
on using a typical randomized method illustrated in Algorithm 2.1 to obtain U and
thus to construct a low-rank approximation by projection.

Algorithm 2.1 Randomized low-rank approximation method

Input: Matrix-matrix product routine of A € R™*" relative error tolerance e,
initial rank guess 7o, over-sampling parameter p
Output: Basis matrix U for low-rank approximation A ~ UU T A

1: Step 1: Form a random matrix Q € R™*("0+P) with its entries independently
generated following the standard normal distribution.

2: Step 2: Compute W = AQ € Rm*(ro+p),

3: Step 3: Compute the column-pivoted QR decomposition of W as WP = QR
where Q € R"™*(r0+P) ig orthonormal, and R € R(0+tP)x(r0+P) s ypper triangu-
lar. Truncate the QR decomposition with relative error tolerance e, i.e., find the
maximum index r satisfying that |R(r,7)| > ¢|R(1,1)|. Return U consisting of
the first r columns of Q.

This randomized method is extensively studied in [5,9]. Theoretically, it is shown
that with high probability the rank-r approximation UU T A constructed by Algo-
rithm 2.1 has nearly optimal approximation error (see Theorem 10.7 of [9]). Experi-
mentally, this approximation usually can have actual relative error of similar scale as
the specified relative error tolerance € in Algorithm 2.1, i.e., |A —UU T A||p/||A|lF ~
O(e). Algorithm 2.1 has O(mnr) computation cost when A is a full matrix and could
be more efficient if any fast matrix-matrix product algorithm for A is available.

3. Butterfly factorization. We consider the butterfly factorization of a special
matrix K (7T,S) defined by a highly-oscillatory operator K(-,-) and point sets S and
T. For example, consider the free-space wave interactions between 3D source points
S and target points T where S and T are non-overlapping (weak admissibility) or
well separated (strong admissibility). Matrix K (T, S) consists of entries K (t;,s;) =
exp(i2mkl|t; — s;|)/|t; — s;| for all pairs (t;,s;) € T x S and is a discretization of
the 3D Helmholtz problem with wave number x > 0. Let |T| = m and |S| = n,
and assume that m = O(n). Other examples of highly-oscillatory operators includes
Green’s function operators for Helmholtz equations with non-constant coefficients,
Fourier transforms, and special function transforms.

3

This manuscript is for review purposes only.

1

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

143
144
145
146
147
148
149
150

—_
—

—
w N

=
S Ot

ot Ot Ot Ot Ot gt Ot Ot
=

oo

~J

3.1. Hierarchical partitioning. The point sets S and T are both partitioned
recursively into small subsets until each finest subset has the number of points inside
less than a prescribed small constant ng. Such a partitioning of S/T is characterized
by a partition tree whose each node corresponds to one subset. For simplicity, we
consider bisection of the sets and denote the resulting two binary partition trees for
S and T as Tg and Tr, respectively. We further assume both Tg and 77 are perfect
(all levels are filled completely). Note that these assumptions can be easily lifted.

Let T, be the subset of points in T corresponding to node 7 in T7. For the root
node t of Tr, T, = T'; for each nonleaf node 7 € Tr with children 7 and 72, T, UT,, =
T, and T,, NT,, = (). With slight abuse of notation, we also use 7;, i = 1,...,2! to
denote all nodes at level [of Tr. The same applies to the hierarchical partitioning of .S,
ie., {Sy}reTs. We assume that both 77 and Tg have the same depth L = O(logn) so
that each subset associated with a leaf node has O(1) points. With such hierarchical
partitioning of 7" and S, the points in 7" and S can be properly reordered so that
points in each subset T /S, correspond to consecutive rows/columns in K (T, 5).

We number the levels of 77 and Tg from the root to the leafs. The root node is
at level 0; its children are at level 1, etc. All the leaf nodes are at level L. At each
level I, 71 and Tg both have 2! nodes.

Tr Tr Tr

(a) (b) (©)

Fic. 3.1. The partition trees Ts and T, and the blocks K(Tr,S,) for a 2-level butterfly
factorization. These blocks correspond to level | of Tr and level L —1 of Ts with (a) I =10 (b)l=1

(c)l=2.

3.2. Complementary low-rank property. It turns out that matrix K(T,S)
satisfies the complementary low-rank property that for any level 0 < [< L, node 7
at level [of 7p and node v at level (L — 1) of Tg, the subblock K(T;,S,) has its
numerical rank bounded by some small constant r. This constant r is referred to as
the butterfly rank. Figure 3.1 illustrates these subblocks with a two-level partitioning
of T and S. Such complementary low-rank property can result from certain analytic
properties of Helmholtz kernel [4,21,24], Fourier transform operator [2], and many
other highly-oscillatory operators.

3.3. Low-rank approximation of blocks. A butterfly factorization of K (T, S)
compresses all blocks K (T, S,) with l =0,1,..., L for nodes 7 at level [of T and v
at level (L —1) of Tg (referred to as the blocks at level [of the butterfly factorization)
into low-rank form via a nested approach. There are three similar forms: (1) column-
wise butterfly factorization, (2) row-wise butterfly factorization [2,8,24,27,31,33],
and (3) hybrid butterfly factorization [1,13,14,28]. Our proposed algorithm is based
on the hybrid factorization as it leads to the lowest algorithmic complexity and the
highest parallel efficiency among the three.

4

This manuscript is for review purposes only.

160
161

162
163

164

165
166
167
168
169
170
171
172
173
174
175

176

179
180
181
182
183
184
185
186
187
188
189

190

191
192
193
194
195

196

197

In the following, we describe all the three forms as the column-wise and row-wise
factorizations also serve as building blocks for the hybrid factorization. For brevity,
we assume all blocks K (T, S,) are compressed into rank-r form.

3.3.1. Column-wise butterfly factorization. Each K(T.,S,) is compressed
into rank-r form

(31) K(T'rvsu) ~ UT,VUIVK(TTvslI) = UT,VET,V7

where U, , € RIT+1X" has orthonormal columns and is referred to as the column basis
matriz associated with (7, v).

Before considering an arbitrary butterfly level L, we first illustrate the column-
wise factorization using a simple example with L = 1. Let ¢ and s denote the
root nodes of Tr and Tg; let 7,70 and vy, s denote the leaf nodes of Tr and Tg.
By the complementary low-rank property, K(7,,,Ss), K(Tr,,Ss), K(T¢,S,,), and
K (T, S,,) have numerical ranks at most r. First, we construct the low-rank approx-
imations K(T,,Ss) = Uy, +E7 s and K(T+,,5s) = Uy, sE;, s. Next, we split each
E. s, i =1,2by columns into [E,, ,,, E;, .,] and consider two vertical concatenations
(Bri ;3 Ery), 5 = 1,20 Since [Er, ,,; Er, ;] has the same row span as K(Tj,S,,),
it can be approximated by a rank-r form [E, . ; Er, .| = Ry, Ey,, where R;,, has
orthonormal columns. The overall process above can be expressed as,

_ -K(TT17SS) ~ UTlvs] Eﬁ’s
K(Tt7ss) - _K(T7-27Ss):| =~ |: UT2,S_ |:E7'273:|

- B]
L UT27S ETz,Vl ET2,V2

_U'r 8 _Et,u

! U72,5:| [Rt,l/l Rt,w] I ! Et,l/g:| .

The last equation gives a one-level column-wise butterfly factorization of K (T, Ss).

In general for L > 1, the column-wise factorization proceeds as follows: At the
leaf level L of Tr, the basis matrix U, is explicitly formed for each 7. At a non-
leaf level | < L, consider a node 7 at level | of 7y and a node v at level (L — 1)
of Ts. Let {11, 72} be the children of 7 at level (I + 1) of 7r and p, be the parent
node of v at level (L —1—1) of Tg. The low-rank approximation (3.1) of K(T,S,) is
constructed by exploiting the available low-rank approximations of blocks K (T, Sp,)
and K (T,,,Sp,) at level (I + 1) in the following nested manner.

Since T = T, UTy,, K(T7,S,) can first be split into two blocks,

%

(3.2) K(T,, 5,) = [K(TTI’S”)} .

K(T%,,5,)

Meanwhile, since S, is a subset of S, , it follows that K(T%,,S,), for each child 7,
of 7, is a subblock of K(T,,Sp,). Thus, the low-rank approximation K(T7,,Sp,) ~
Ur..po Er p, at level (I + 1) yields a low-rank approximation of K (T , S,) as,

K(TTa ’ SV) ~ UTcupu ETaaV’

where E;_ , is a subset of columns in E;, , corresponding to S,. Substituting this
approximation into (3.2) gives

~ UTl,p,,ETl,D _ UTl,p,, ETl,l/
(3.3) K(T:,S,) ~ [} = [UT2,pu] [ETZJ :

T2,Pv T2,V

5

This manuscript is for review purposes only.

198
199
200

228
229

230
231

232

Instead of directly compressing K (7, S,), we compute a rank-r approximation
of the last matrix above, which only has 2r rows and is far smaller than K(7T,S,),
as

ETl,l/ ~
(3.4) [Em } ~R;,E.,,

where R, has orthonormal columns. Substituting (3.4) into (3.3), we obtain a rank-r
approximation of K (7, S,) as,

K(TT7 Su) ~ |:UT1’pV :| RT,DET,D = UT,I/ET,D7

UT2 sPv

where the column basis matrix U, , is

U
35 U-ry = TPy :| RTV7
(35) o= |

and R,, is referred to as a transfer matriz; note that U, , still has orthonormal
columns.

Using (3.5), the basis matrices at any non-leaf level [are expressed in terms of
the basis matrices at level (I + 1) via the transfer matrices. Thus, the basis matrices
at any non-leaf level are not explicitly formed but instead recovered recursively from
quantities at lower levels. In the end, the butterfly factorization of K (T, S) consists
of the low-rank approximations of blocks at level 0 of Tr, i.e.,

K(T,S)= [K(Tt,Syl) K(T,S,,) ... K(Tt,SyzL)}
(36) ~ [Ut7V1 Etﬂll Ut,ugEt,Vg ce Ut7V2L Et7V2L]
= (U*R*'R*2 .. _R")E®
where ¢ denotes the root node of 77, v1,...,v5. are all the leaf nodes of Tg, and
Uty Utw,, are the corresponding column basis matrices. Expanding each Uy,

using the nested form (3.5) up to the leaf level of 77, K(T,S) can be represented
as the product of the (L + 2) matrices in (3.7) where U" = diag(Uy, s, ..., Ur, s)
consists of all the column basis matrices at level L of Tr (s is the root of Tg), E® =
diag(Et ;- -+, Etu,,), and each factor R'1=0,...,L—1is a block diagonal matrix
consisting of special blocks R, for all nodes v at level | of Tg. Here, each R, consists

of R, ,, and R, ,, for all nodes 7 at level L —1[of Tr as

Rﬁ,l/l RT1,V2
RT2,V1 RT27V2
RTQL—th RTgL—th

where {11,v2} denotes the children of v. We term U and E° outer factors and R!
inner factors. Figure 3.2(a) shows an example of a 4-level column-wise factorization.

3.3.2. Row-wise butterfly factorization. Each K (T, S,) is compressed into
rank-r form as

(3.9) K(T;,Sy)) = K(T:, S,)V;, V., = Fr V),

TV
6

This manuscript is for review purposes only.

236

237
238

DO
=

241
242
243
244

245

246

247

s L E |
E : FE n
L I BR ++
i | 1| n
1 L i n
g L1 £4 &
I... R R’ R R E°
U’ @
B |
* e "
++ i I T I "
I I
++ " - - I L ‘ --
+ ! 1 ! 1 ! 1
W4 W] WZ Wl V(!
F* (b
E I =
] R T) o -_
| | L. L8 Lo, 8 .) T '
B] E—— aE ; L !
| a | a 1 1
R R’ B’ w2 W' yo
Ut
(©)

Fic. 3.2. (a) Column-wise, (b) row-wise, and (c¢) hybrid butterfly factorizations for a 4-level
hierarchical partitioning of T and S. The blocks in black multiply to Ut Etu, in (3.6), FTI,SVT

T1,8?

and Ury vy Bry v, V! . in (3.13), respectively.

viVTy,v

where V,, € RIS/ %™ has orthonormal columns and is referred to as the row basis
matriz associated with (7,v). Just like for the column-wise factorization, we define
the transfer matrix W, , for a non-leaf node v as

Vprvl’l

(3.10) V,, = { -

7.

The basis and transfer matrices can be constructed upon applying the column-
wise butterfly factorization to K (7T, S)T, yielding the row-wise butterfly structure

(3.11) K(T,S) = FE(WEwE=t . . wivo).

The outer factors are FI' = diag(Fr, s, ... L s) with s denoting the root of Tg and
Vo= diag(VtTyl, cee VJ,zL). The block diagonal inner factors W', =1,..., L consist
of blocks W for all nodes 7 at level I — 1 of 7. Each W, consists of W, , and W, ,,
for all nodes v at level L — [+ 1 of Tg, as

WT1,V1
WT1,V2
Wew
(3‘12) WT _ W 1,VoL—1+1
T2,V1
WT27V2
L WTz,Vszerl

Figure 3.2(b) shows an example of a 4-level row-wise factorization.
7

This manuscript is for review purposes only.

3.3.3. Hybrid butterfly factorization. At any level | of Tr, K(T-,S,) with
all nodes 7 at level [of Tr and nodes v at level (L —) of Tg form a non-overlapping
partitioning of K (T, S). Fixing I, we can combine the computed row and column basis

matrices U, ,, V;, from both the column-wise and row-wise butterfly factorizations
of K(T,S) above to compress K (T;,S,) as

K(T7'7 SV) ~ UT,VUIVK(Trz SV)VT,IJVTTV = UTJ/BT,VVTTZ/'
The hybrid butterfly factorization of K(T,S) is constructed as,

-K(TTl’Sl’l) K(TTNSVz) K(Tﬁvqu)
K(TTzaSl/l) K(TTzv‘SW) K(TTzvqu)
K(T,S)=
_K(Trpvsyl) K(TTP7SI/2) e K(Tpr‘Suq)
_UT1,V1 B7'17V1 VTT,V1 UleVzBTl,V2 V’TT,VQ e Ulel/qBleVqVTT,l/q
(3.13) ~ UT2,V1 B'rz,m Vfr—gr,ul UT2,V2 BTz,Vz Vfr—zr,z@ : U7-27Vq B7-27Vq V‘rl—,uq
_U'rp,ul B‘rp,ul Vq-:,yl U‘rp,l/2 BTpaV2 VT—;,I/Q T UTP’VG BT}N”’Z VTIWq
(3.14) = (URFIRF2 R B (WWI L WVY)
where 7, 72,...,7, are the p = 2! nodes at level I of Tp, and Vi,V,...,Vq are the

q = 27! nodes at level (L — 1) of Ts.

In this level-l hybrid butterfly factorization, these column basis matrices U, are
recursively defined as in (3.5) using column basis and transfer matrices in the lower
levels of 77, and the row basis matrices V; ,, are recursively defined as in (3.10) using
row basis and transfer matrices at upper levels of 77. In (3.14), the outer factors
UL, VO and inner factors { R*}, {W*} are defined in Sections 3.3.1 and 3.3.2, and the
inner factor B! consists of all blocks B, , at level [in (3.13). For simplicity assuming
Try =T, B! is a p x ¢ block-partitioned matrix with each block of sizes gr x pr; the
(i,4) block is a g x p block-partitioned matrix with each block of sizes r x r, among
which the only nonzero block is the (j,) block and equals B, ,,. Typically, the level
[is set to center level I, = |L/2]. Figure 3.2(c) shows a hybrid butterfly factorization
with L =4 and [, = 2.

4. Adaptive butterfly factorization via randomized matrix-vector prod-
ucts. We propose an algorithm for constructing the butterfly factorization of a ma-
trix A = K(T,S) using only products of A and its transpose with random vectors.
The proposed Algorithm 4.1 returns a hybrid factorization with prescribed tolerance
€ assuming black-box matrix-vector multiplications. With minor modifications, Al-
gorithm 4.1 also applies to column- and row-wise factorizations albeit with a much
higher computational cost, i.e., O(n?logn). In what follows, we describe the four key
components of the algorithm, including

e The computation of K(T,S5,), and K(T,,S,) T, with random matrices
Q, and I'; using a black-box routine.

e The construction of column basis matrices U, , (or transfer matrices R, ,
for non-leaf nodes 7 in 77) based on matrix-vector multiplications involving
K(T,S).

e The construction of row basis matrices V;, (or transfer matrices W, , for
non-leaf nodes v in Tg) based on the matrix-vector multiplications involving
K(T,S)T.

This manuscript is for review purposes only.

@ ®) ©
uooQ vt R Q, vt R R Q
() (e) ()

U’ 7 R] R’ B | W2 | W o O
(2

F1a. 3.3. A 4-level hybrid factorization based on matriz-vector products consists of steps that
compute (a) VO, (b)) WO, (c) WL, (d) U%, (e) R3, (f) R%, and (g) B2. Note that the vectors Q, or
T'; and the blocks being computed are marked with the same texture. The already-computed blocks
needed at each step are plotted in Green.

e The construction of intermediate matrices B, ,, in (3.13).

4.1. Multiplication of K(T,,S,) and K(T,,S,)" by random matrices.
Here we assume the existence of a black-box program to perform matrix-vector mul-
tiplications involving K (T, S) and K(T,S)". To use Algorithm 2.1 to compute the
column /row basis matrices for each block K (T, S,), we multiply K (T, S) or K(T,S)"
with structured random matrices Q, and T'; to obtain the matrices K(T,,5,)Q, and
K(T;, SV)TFT that are used in Algorithm 2.1. As we shall see later, €, and I', are
sub-vectors of Q, and T';. Their entries are random variables which are independent
and identically distributed, following a normal distribution.

Fixing a node v at level (L—1) of Tg, we compute K (T, S,)Q, with a |S,|x (r+p)
matrix 2, for all nodes 7 at level I of Tp, by multiplying K(T,S) with a sparse
|S| x (r 4+ p) matrix 2, whose only non-zero entries), are located on the rows
corresponding to S,. To evaluate all the multiplications K (7,5,), at level [(of
Tr), 2D (r + p) matrix-vector multiplications by K (T, S) are needed.

Similarly, fixing a node 7 at level I of 77, we compute K(7,,S,) T, with a
|T| x (r+p) matrix T, for all nodes v at level (L —1) of Tg, by multiplying K (T, S)"
with a sparse matrix T, € RI7X("+P) whose only non-zero entries I'; are located on
the rows corresponding to T,.. To evaluate all the multiplications K (T, SV)TFT at
level I (of Tr), 2!(r + p) matrix-vector multiplications by K(7T,S)" are needed. In

Algorithm 4.1, the products K (T, S,)Q, and K(T,,S,)"T'; are performed on lines
4, 23, 13, 33.

4.2. Computation of U, , and R, ,. For each leaf node 7 at level L of Tr
and the root node s of Tg, the column basis matrix U, s can be directly computed
using Algorithm 2.1 by evaluating K (7T, Ss)Qs. In Algorithm 4.1 (line 2), the ranks
of U, s are determined by adaptively doubling the size of the random matrices €2, for

9

This manuscript is for review purposes only.

Algorithm 4.1 Adaptive and randomized hybrid butterfly factorization based on
matrix-vector multiplication

wi

Input: Black-box routine for multiplying K(T,S) € R™*™ and its transpose
th arbitrary matrices, over-sampling parameter p, relative error tolerance e, initial

rank guess 1, binary partitioning trees 7g and 77 of L levels.

Output: K(T,8) ~ (UFRI=IRE=2 . Rle)Ble(WleW!le=1 [WV with [. =

1L/2).

1: r=rg.
2: while not converged do > Adaptive computation of V., at level 0
3: Form a random matrix I'; € RI7+*("+P) for the root node ¢ of T7.
4: Compute K(T;,S) T.
5: for v at level L of Tg do
6: Apply Algorithm 2.1 with A = K(T},S,)" to compute V; .
7 end for
8: Converge if r > mlz/ix{rt,l,}. > Over all nodes v at leaf level of Tg
9: T 2r.
10: end while
11: while not converged do > Adaptive computation of U, at level L
12: Form a random matrix Q, € RIS:[X("+P) for the root node s of Tg.
13: Compute K (T, Ss)s.
14: for 7 at level L of 7 do
15: Apply Algorithm 2.1 with A = K(T-, S,) to compute Uy ;.
16: end for
17: Converge if 7 > max{r, s} > Over all nodes 7 at leaf level of Tt
18: T 2r. ’
19: end while
20: for [=1tol. do > Computation of W,
21: for 7 at level | of 71 do
22: Form T, € RIT-*+P) with r = mEX{TpT,m +7p. 1} > Over all nodes
v at level L —1[of Tg
23: Compute K(T,,S)T,.
24: for v at level L - l of Ts do
25: Compute {VPT’” + | (K(T,,8,)'T,) = AT,
26: Apply Algorithm 2.11?%c7)1r2 W, with A above.
27: end for
28: end for
29: end for
30: for{=L—1tol.do > Computation of R, and B, ,
31: for v at level L — [of Tg do
32: Form 2, € RIS/IX(r+p) with r = mTax{rT1 py +Try.p, 3> Over all nodes 7
at level [of T
33: Compute K(T,5,)Q,.
34: Compute VTTVQI, it 1 = 1. > VTTV is not explicitly computed.
35: for 7 at level L - l of Tr do
36: Compute {Uﬁ’p“ UT] (K(T7,5,)00) = AQ,
37 Apply Algorithm 2.1 E(;Z;VRT,V with A above.
38: Compute B, using (4.1) if [= [.
39: end for 10
40: end for
41: end for

This manuscript is for review purposes only.

316
317
318
319

320

322

323
324
325
326
327
328
329
330
331

333
334
335

336

337

338

339

340

w0
[LaN
[N

343
344
345
346
347
348
349

350

U; s until convergence. The iteration is terminated if the rank estimate r exceeds the
maximum revealed rank max{r;,} (see line 17). This heuristic stopping criterion is
v

used as a more rigorous criterion requires expensive computation of the approximation
error.

For each non-leaf node 7 at level I, <1 < L of Ty and each node v at level (L —1)
of Tg, the matrix to be compressed in (3.3) when computing R., can be expressed
as, .
|:E‘rl,1/:| _ |:UT1,PV UT :| K(TT’SD) =1 R.,.J,E.,.yl,.

ET? id T2,Pv

Thus, R;, can be computed via Algorithm 2.1 using the products

ur,

1Py T K(T;,S,)Q,.
T2,Pv

Note that no rank adaptation is needed for R, , in Algorithm 4.1 as the rank r;,

is bounded by r;, ,, + 7r, p,. The dimensions of the random matrices 2, therefore

are chosen using the rank estimate r = max{r,, ,, + r,p, } o1 line 32. This process

recursively traverses Tr from the leafs to center level [, and Tg from the root to center
level [..

4.3. Computation of V., and W, ,. The computation of V,, and W, , re-
sembles the above computation of U, , and R, ,, but uses the multiplication results
K(T,, SV)TFT. V. for leaf nodes is computed adaptively on line 11 while W, ,, for
non-leaf nodes is computed using Algorithm 2.1 using the multiplication results

VT
|: Pr,1 VT :|K(TT,SV)TF7—-

Pr,V2

where the dimensions of the random matrices I'; are chosen using the rank estimate
on line 22 without adaptation. This recursive construction starts from the leaf level
of Ts and ends at center level [..

4.4. Computation of B, , at level [.. It follows from (3.13) that for each node
7 at level . of Tr and node v at level (L —1.) of Ts, K(Tr,S,) is approximated as

K(T;,S,) = Ur By, V.
Using the existing multiplication results K(T;,S,)2,, By, can be estimated as

B;, = argmin | (K(T:,S,)%) - U, BV, Q| r

BER" T, v XTT,v

(4.1) = U, (K(Ty, $,)%) (V.) "

Note that Algorithm 4.1 computes and stores K(T,S,)Q, (or K(T,,S,)'T;)
only for one €2, at a time, therefore the algorithm is memory efficient. As an example,
Figure 3.3 illustrates the procedure for constructing a 4-level hybrid factorization.
Note that the random matrices for the inner factors are structured.

4.5. Cost Analysis. Let c(n) denote the number of operations for the black-
box multiplication of K(S,T)2 or K(T,S) " for an arbitrary n x 1 vector Q. In the
best-case scenario, ¢(n) = O(nlogn) as K(T,S) is typically stored in a compressed
form using O(nlogn) storage units; in the worst-case scenario, c¢(n) = O(n?) when

11

This manuscript is for review purposes only.

the matrix is explicitly stored in full. In what follows, we assume c¢(n) = O(nlogn).
Let r = max, , {7, } denote the maximum butterfly rank. Here we analyze the com-
putation and memory costs of Algorithm 4.1 when applied to two classes of butterfly-
compressible matrices: (i) r is constant (up to a logarithmic factor). (ii) r = O(n'/%).

4.5.1. r is constant. This case typically occurs when the matrix arises from the
discretization of 2D surface integral equations exploiting strong or weak admissibility
conditions [7,20,21], 3D surface integral equation solvers using strong admissibility
[8], low-dimensional Fourier operators [14], etc. For example, Figure 4.1(a) shows
the center-level partitioning of a 2D curve used in surface integral-based Helmholtz
equation solvers in which all blocks have constant rank except for O(1) ones with rank
O(logn). (see [21] for a proof).

As described in subsection 4.1, there are 2!(r + p) black-box matrix-vector multi-
plications by K (T,S)" at level I =0, ...l and 25D (7 + p) black-box matrix-vector
multiplications by K(T,S) at level [= L, ..., l.. Therefore the black-box multiplica-
tions require a total of 2(r +p) (1424 ...+ 2l)c(n) = O(rn'/?c(n)) = O(rn®/?logn)
operations. It is worth noting that the multiplications on lines 26 and 37 only involve
partial factors V,,_,, and U, ,, and their computational cost is dominated by that
of the black-box multiplications. In addition, the algorithm only stores multiplication
results for each random matrix of dimensions n x (r + p) and the computed butter-
fly factors. The computation and memory costs of Algorithm 4.1 therefore scale as
O(n®/?logn) and O(nlogn), respectively.

4.5.2. ris O(n'/*). This case often results from discretizing 3D surface integral
equations using weak admissibility. For example, Figure 4.1(b) shows the center-level
partitioning of a 3D surface used in surface integral methods for Helmholtz equations.
Out of the 16 x 16 = 256 center-level blocks of size O(n'/?) x O(n'/?), only 4 blocks
have rank O(nl/ 4) representing interactions between adjacent pairs. As the adjacent
pair is typically co-planar, the edge shared by the pair can serve as the proxy surface
that represent interactions between the pair. Therefore the rank is bounded by the
edge dimension O(n'/*) (See [4]). We claim, without proof, that except for O(n'/*)
blocks with rank of at most O(n'/*) at each level, the rest has constant rank.

We only need to focus on the construction of blocks with non-constant ranks as the
rest has been analyzed above. We first analyze the cost of black-box multiplications on
lines 4 and 23. For all blocks at level 0 <1 <., denote N; = {7|r,, non constant}.
It can be verified that |N;| = O(2l%/2]) and each 7 € N, requires O(r + p) = O(n'/*)
matrix-vector multiplications. Therefore the black-box multiplications K (T, S)TFT
require a total of Zﬁ;o |N|O(nY*)O(nlogn) = O(n'/2c(n)) = O(n*?logn) opera-
tions. A similar number of operations is required for K (7', S,)2, on line 13 and 33. In
addition, since each computed factor has O(n'/*) blocks of rank O(n'/*), the storage
cost is O(n*/*)O(n'/?)L < O(nlogn). Overall the computation and memory costs of
Algorithm 4.1 are of the same orders as those in the case of constant r.

5. Error analysis. In Algorithm 4.1, the low-rank approximation of each indi-
vidual block constructed by Algorithm 2.1 has O(e) relative error with high proba-
bility, where ¢ is the specified relative error tolerance. As a result, the relative error
of the constructed butterfly factorization is also probabilistic. Rigorously analyzing
such a probabilistic error is out of the scope of this paper. To partially analyze the
proposed algorithm, we instead provide an error analysis for a deterministic variant
(with minor modifications) of Algorithm 4.1. Specifically, we replace the random
matrices I';, € RIT-Ix0r+p) Qe RISV IX("+P) with identity matrices I € RIT-IXIT-

12

This manuscript is for review purposes only.

423
424
125
426

427

428
429

.....

O(n'*) 75 nodes

O(n'?) Tr nodes
(a)

Fic. 4.1. (a) Center-level geometrical partitioning of a 2D curve for a 4-level butterfly factoriza-
tion of a weak-admissible matriz. The ranks for all center-level blocks are bounded by O(logn). (b)
Center-level geometrical partitioning of a 3D surface for a 8-level butterfly factorization of a weak-
admissible matriz. There are O(n'/*) center-level blocks with rank O(n'/*) (with the interaction
pairs denoted by the red arrows)

I € RISVIXISvl in Algorithm 4.1. On the one hand, this deterministic variant needs
to multiply many more vectors than necessary (note that this variant is only used
for error analysis purpose). On the other hand, black-box multiplication with iden-
tity explicitly forms each block A and Algorithm 2.1 reduces to a deterministic QR
decomposition algorithm. The resulting approximation of A thus has a deterministic
error bound.

Denote €y as the maximum relative error ||[A — UU T A||r/||A||r of all the blocks
A in Algorithm 4.1 that are directly compressed by Algorithm 2.1. Given the relative
error tolerance ¢, in the above deterministic variant, ey ~ O(e); and in the randomized
Algorithm 4.1, ¢y can be viewed as a random variable and is of scale O(¢) only with
probability. In the following, we provide an error analysis using the deterministic
variant of Algorithm 4.1.

Recall that the construction of all three forms of butterfly factorizations starts
from the leaf level of either 77 or Tg and moves towards to the root level. In this
procedure, the corresponding low-rank blocks at each level are compressed level-by-
level by the nested approach. The error analysis below proceeds in the same manner
as we first analyze the error induced by the compression of blocks at the leaf level
and we then accumulate the error induced at each non-leaf level with those from the
previous levels.

5.1. Approximation error for the nested basis U, ,. Given any level [, <
I < L of Ty, matrix K(T, S) is partitioned into blocks { K (T, S,)} with 7 at level [of
Tr and v at level (L —1) of Tg, and K (T, S,) is approximated by UT,,,UIVK(TT7 Sy)
where U, is the nested basis computed in subsection 4.2. Theorem 5.1 states that
this approximation for all blocks at level [has an error bounded by g/ L — [+ 1||A|| .

THEOREM 5.1. Given a level | in the range L > 1 > ., the low-rank approxima-
tions of all the blocks K(T,,S,) at level I (T at level I of Tr and v at level (L — 1)
of Ts) based on the computed column basis matrices U, , have approzimation errors

bounded by

(5'1) Z ||K(T‘r7 S,,) - UTaVUIIJK(TT’ SV)”%“ < (L -+ 1)68”K(T7 S)H%ﬁ

7,v at level |

where the summation of T is over the nodes at level | of Tr and the summation of v
is over the nodes at level (L —1) of Tg.

13

This manuscript is for review purposes only.

130
431
432
433

435
436
137
438
439
440
142

443

444

445

446

449

462

Proof. We prove the theorem by induction for level | changing from L to [.. First,
for [= L, the column basis matrix U, s for block K (T, Ss) at level L of Tr is directly
computed by Algorithm 2.1. Thus, based on the above relative error assumption, the
approximation error is bounded by

1K (7, S5) = Ur,s U JK(Tr, S9)|l 7 < €| K (T, S6) -

Moreover, summing over all nodes 7 on both sides of the above inequality proves (5.1)
for Il = L.

Assume that (5.1) holds true for level (I +1). For each node 7 at level I of Tr, let
vy and vy be siblings at level (L —) of Ts. Let {71, 72} be the children of 7 at level
(I 4+ 1) of T and v be the parent node of {v,v5} at level (L —1 — 1) of Tg. Note
that K(T,,S,,) and K (T, S,,) are compressed blocks at level [while K (T, S,) and
K(T,,,S,) are compressed blocks at level I + 1. Moreover, these two sets of blocks
correspond to the same large block in K (T, S), i.e.,

K(T7,,5,)

[K(T,,S,,) K(Tr,S,,)] = [K(Tmsy)

} = K(T},8,).

Recall that U, ,, is computed in a nested fashion as

— K(T7'17SV1) ~ U7'1,U U;[,UK(TTUSW)
K(TT’SVI) - [K(TT27SV1):| ~ |: UT2,'/:| |:UT K(TTWSVl)

T2,V

~ UT17V T U;E I/K(TTl? SV1) _ T
- [Ufzvl’] foranfis, |:U;|;7UK(TT2, Su)] Urm UT’VIK(TT’ Sn):
where R, ,, is computed by applying Algorithm 2.1 to the intermediate matrix above,
ie.,

T1,V

Uy, K (Try, Siy)

T2,V

(5.2) ~R,, Rl

T,V1

U';E,UK(TTUSW)
Ury K (Try, S11)

T2,V

{UT K <TTI,SV1>} .

The approximation error of block K(T%,S,,) at level [can be estimated as

HK(TT7SV1) - UT7V1UT K(TT7SV1)H%'

2
— UTl,V U:,VK(TTNSW)
= HK(T‘F7 Sul) - |: UT27”:| |:Ui,yK(Trg7Su1) ”

2

U‘Fl,l/ U;l; VK(TTU SVI) T
* { UTZJ {UT K(T,.8,,)] ~ VrnUrun KT S)

T2,V

F
= HK(TTNSVl)_UTl,VUT K(TTNSVl)Hi-* + HK(T7'27SV1) - UszVUT K(TTQ’SVl)HiT‘

T1,V T2,V
2

+ {U;,MTH,SW)} R RT [U;,VK(Tmsm)]
UTQ,VK(TTZ’SVI) T UTQ,DK(TT2VSV1) 2

where the first equation is due to the orthogonality between the columns from the two
bracketed terms, and the second equation follows from the unitary invariance of the
Frobenius norm, as U,, , and U, , both have orthonormal columns. The last term
above, which is the approximation error of (5.2), is guaranteed to satisfy

Ul K(T:, S)V I K(T,, Su)1°
2 T,V T1H MU 2 T19 P _ 2 2
60 |:U7—'|;,UK(TT27 Sl/l):| F = 60 K(TT27SIJ1) F N GOHK(TT’ Syl)”F.

14

This manuscript is for review purposes only.

163
464

465

169
470
17
A73
474
AT5
476

478

181
482
483
484
485
486
487

488

489

490
491

492
493
494
195

196
197
498
499

Similarly, we can estimate the approximation error of block K(T5,S,,) at level [as

||K(Tﬁ SVz) - U‘rﬂ/zUT K(TT, Suz)H%7

V2

< ||K(T7'USV2) - Ulel/UT K(T‘FUSW)Hi'

T1,V

2
+ ||K(TT27SV2) - UT27VUT K(TTzv SVz)HF + eg”K(TTa SV2)||2F

T2,V

Assembling the above three inequalities and using S, = S, U S,,, we obtain

”K(Tﬂ SVl) - lv]"’,lflUT K(TTa Sl/l)”%‘ + ||K(TT7SV2) - []‘I',l/2[]T K(TT’SVQ)H%'

T,V1 T,V2

<K (T, S)) = Uny b UL K (Try)| o+ | K (Try 80) = Uny WU LK (T, S|

T1,V T2,V

+eo (1K (Tr, Su) I + 1K(Tx, o)1) -

The left hand side of the inequality is the approximation error of the two blocks at
level [while the first two terms on the right hand side are the approximation errors of
two blocks at level (I + 1). Summing over all the nodes 7 at level [of 77 and all the
node pairs (v1,v9) at level (L —1) of Tg on both sides of this inequality, we obtain,

Z HK(TﬂSu) _UT,VUTT,VK(TTHSV)H%

T,v at level [

< > 1K (7, Sy) = Uro UL K (T, S)l3 + €| K (T, 9|17
7,v at level (I41)

< (L= (+1)+ DK (T, S)F + I K (T, S)|F = (L =1+ Deg| K(T, 8)| 70

5.2. Approximation error for the nested basis V, ,. The overall approx-
imation error for the projection to the row bases is bounded just like that of the
column bases shown in Theorem 5.2.

THEOREM 5.2. Given a level | in the range L > 1 > I, the low-rank approrima-
tions of all the blocks K(T-,S,) at level I (T at level | of Ty and v at level (L —1) of
Ts) based on the computed row basis matrices V., have approzimation errors bounded
as

(5:3) Yo KT, S) = K(Tr,) Veu VL I < U+ D | K (T, 5)|

T,v at level |

where the summation of T is over the nodes at level | of Tr and the summation of v
is over the nodes at level (L —1) of Tg.

Proof. The proof is similar to that of Theorem 5.1.]

5.3. Approximation error for the overall factorization. Combining the
above two error analyses for the column- and row-wise butterfly factorizations, the
overall approximation error of a hybrid butterfly factorization at any level | can be
bounded as shown in Theorem 5.3

THEOREM 5.3. Given center level l. = | L/2], the low-rank approximations of all
the blocks K(Tr,S,) at levell. (T at levell. of Tr and v at level (L —1.) of Tg) based
on the computed basis matrices U;, and V;, have an overall approzimation error
bounded by

54 Y KT S)) = Urh U K (T, S) Ve V3 < (L +2)6g || K (T, S)II,

T,v at level 1

15

This manuscript is for review purposes only.

wt

[NV}
—_

w N

NN NN
N

ut

o
© 0 N O

©

U = W N =

ot Ot Ut Ot O Ot Ot Ot Ot Ot ot Ot gt Ut Ot

W W W W W W W N N N

[«

where the summation of T is over the nodes at level l. of Tr and the summation of v
is over the nodes at level (L —1.) of Tg.

Proof. Every block K (T, S,) has its approximation error bounded as
1K (T, 8,) = Ury UL K(Tr, 80) Ve Vo I
< | K(Tr, 8)) = U UK (T, S,) |17
+ | Urn U K (Ty, S0) = Uri UL K (Tr, S,) Ve Vi 17

v

< B (Tr, 8y) = Ury U K (Tr, S5 + |1 K (T, S0) = K (Tr, $) Ve Vo |17
Using (5.1) and (5.3) in the above equation, inequality (5.4) is proven. 0

The above error analysis can be further combined with the probability of ey ~ O(e)
in the randomized Algorithm 4.1 to derive a rigorous probability bound. Suppose
Algorithm 2.1 can attain a relative error O(e) with probability p, one can show that
Algorithm 4.1 can attain the relative error in Theorem 5.3 (replacing ey with O(e))
with probability at least pQL(L“‘z). Though we will not derive a tighter probability
bound in this paper, the numerical results in section 7 provide clear evidence for the
accuracy of the randomized butterfly factorization algorithm.

Lastly, we note that the above error analysis also applies to other deterministic
projection (i.e., SVD and QR)-based butterfly factorization algorithm. The only
assumption we made in Theorem 5.3 is that the low-rank approximation of all the
blocks explicitly compressed in the construction of a butterfly factorization has the
actual relative error bounded by ¢q.

6. Parallelization. This section outlines a distributed-memory implementation
of Algorithm 4.1. We first consider the task of parallelizing a butterfly-vector mul-
tiplication assuming that the butterfly factors are stored in a distributed fashion.
Note that this is the dominant computational task in the proposed algorithm as the
black-box multiplications on lines 4, 23, 13, 33 often involve existing butterfly repre-
sentations, and the explicit multiplications on lines 34, 26, 37 involve partial butterfly
factors. A good parallelization strategy for these two types of multiplications there-
fore is paramount to the parallel implementation of the proposed randomized butterfly
reconstruction scheme.

Without loss of generality, we assume that r;, = r for some constant r, the
number of butterfly levels L is even, n = r2¥, and the number of processes 1 <
p < 2 is a power of two. To estimate the algorithm’s communication cost, we only
analyze the number of messages and communication volume as we assume the time
to communicate a message of size m between two processes is a + fm where a and 3
represent message latency and inverse bandwidth, respectively [11].

6.1. Column/Row-wise factorization. We first describe the parallelization
scheme for the column-wise butterfly factorization studied in [29]. The parallel data
layout can be descried as follows: (i) starting from level L of 77, one process stores
2L /p consecutive blocks U ¢ following a 1D-row layout. (ii) Atlevels{=L—1,...,1,
let {71, 72} be the children of 7 at level [of Tr and {v1,12} be the children of v at
level L — [—1 of Tg. Consider the combined transfer matrix:

(61) RTJ/ == |:RT17V R7-2 V:| [RT,Vl R‘r,l/l]

where R, , can be replaced by U, , if | = L — 1. The parallelization scheme stores

R., ., (or U, ,ifl=L—1)and R,,, on the same process. (iii) At level [= 0, the
16

This manuscript is for review purposes only.

[S
S © w3

—_

3

blocks E; , and R, , are stored on the same process. Figure 6.1(a) illustrates the data
layout for a 4-level column-wise butterfly factorization using 4 processes. Note that
at level | = 0, the layout of E}, is similar to the 1D-row layout for U, ,, but in an
index-reversed order.

When multiplying a (partial) butterfly stored as described above by a vector
stored using the 1D-row layout, an all-to-all communication is required to convert the
vector from the 1D-row layout to the index-reversed layout of F; ,. To this end, each
process communicates min{2% /p, p— 1} messages of total size 72 /p. For the example
in Figure 6.1(a), process 0 (light green) needs to scatter the locally stored part of
of size 2¥/p x r to all other processes before the multiplication operation with E°
can take place. After that, there are logp levels requiring pair-wise exchanges of the
intermediate multiplication results R'... ROE’Q (e.g., after multiplication with R
and R; in Figure 6.1(a)). For each exchange operation, reductions involving messages
of size r2% /p between two processes are performed (note: broadcast is conducted for
multiplying the transpose K (T, S)T). For example, considering the multiplication
with R, ,, (stored on process 0 in light green) and R, ,, (stored on process 2 in dark
green) in the first diagonal block of R, the local multiplication results of size 2r x r
require a reduction between processes 0 and 2 before the local multiplication with
the first diagonal block of R! is performed. The communication costs are listed in
Table 6.1.

The parallelization of the row-wise butterfly factorization can be described simi-
larly: At level I = 0 of Ty, V4, is stored using the 1D-row layout; at levels { =1,..., L,
Wy, (or V., it l =1) and W, , are stored on the same process. The communica-
tion costs for the row-wise parallelization are the same as those for the column-wise
parallelization.

6.2. Hybrid factorization. Since Algorithm 4.1 computes a hybrid factoriza-
tion, it is more convenient and efficient to combine the column-wise and row-wise
parallel data layouts. Specifically, the factors UFRE-TRL=2 . Rle are stored using
the column-wise layout whereas those of Wl W'=1 W1V0 adhere to the row-wise
layout. The block B, is handled by the same process as W, in Wte. When multi-
plying the (partial) butterfly with a vector €2, all-to-all communication is needed for
the intermediate result BleW!leWle=1 _ WV0Q. In contrast to the column/row-wise
layout, the number of levels requiring pair-wise exchange is only max{0, log p?/2-}.
Note that no exchange is needed if p < 2/2. As an example, Figure 6.1(b) shows the
multiplication of a 4-level hybrid butterfly using 4 processes. Here, p = 25/2 and the
only communication is the all-to-all operation that occurs after multiplying with B2
to switch from the row- to the column-wise layout. Table 6.1 lists the communication
costs for the hybrid data layout. Clearly, the multiplication using the hybrid fac-
torization requires less communication than multiplication with the column/row-wise
factorization.

Now we can summarize the proposed parallelization strategy for Algorithm 4.1
as follows:

e The black-box multiplications on lines 4, 23, 13, 33 follow the hybrid layout
if they involve existing parallel butterfly representations.

e The computed butterfly factors follow the hybrid layout for each process that
applies Algorithm 2.1 on lines 26 and 37 locally for the blocks it is in charge
of.

e The explicit multiplications with computed butterfly blocks on lines 34, 26,
37 follow the hybrid layout but may not involve all the processes.

17

This manuscript is for review purposes only.

596
597

598

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

617

cxchange «cexchange all-to-all~

E L T i i -
s] == g
CO I | 2 * L .
[8 A | & 4, S
| | [} BN Rl -
h, Lo L I E | -
5 R R R R E° Q
gt ™ @
«all-to-all ‘
7, 7, 7, 7, ! - ! |
A | | —
[e ™= " | “ -
Il I | | | = u -- ! | -
" L L' BENF " = -
l. R} RZ BZ WZ WI V{) Q

()

Fic. 6.1. Parallel data layout for distributing a 4-level (a) column-wise and (b) hybrid factoriza-
tion with 4 processes. Each color represents one process. The arrows denote places where exchange
and all-to-all communications are needed for multiplying the butterfly with a 1D row distributed
vector. Note that no exchange is needed for the hybrid butterfly.

exchange all-to-all
volume message count | volume | message count
r2" logp r2" N
column / row . >] log p i > m?n{ n ,p—1}
hybrid =~ max{0,log #r} | max{0,log £ } == min{=>-,p — 1}
TABLE 6.1

Communication volume and message counts for one matriz-vector multiplication.

7. Numerical results. This section provides several examples to demonstrate
the accuracy and efficiency of the proposed randomized algorithm. The accuracy of
the proposed algorithms is characterized by

|AQ — (UFRETIREZ2 RN BY(W'W!SL WV Q||,
1AL 7

(7.1) error =

with a random testing matrix € of 16 columns. All experiments are performed on
the Cori Haswell machine at NERSC, which is a Cray XC40 system and consists of
2388 dual-socket nodes with Intel Xeon E5-2698v3 processors running 16 cores per
socket. The nodes are configured with 128 GB of DDR4 memory clocked at 2133
MHz. Unless stated otherwise, all experiments use one Cori node.

7.1. Exact butterfly factorization. We first apply the algorithm to “recover”
a matrix with known butterfly factorization. In what follows, we use the symbol
“a” to differentiate the blocks and factors of the known butterfly from the computed
ones. Let A be a n x n matrix with a given L-level butterfly factorization A =
(ULRL=IRL=2 RHBYW'W!=L . . W1VO0) that has 7., = r for all blocks at all
levels for some constant r. The blocks WTW, RTW, and BT,,, have dimensions r X 27,
2r x r and r x r, respectively. We choose the matrix dimension n = 25+3 such that
UT’S and Vt’,, have dimensions 8 x r. The blocks UT’S, Vt’,,, WT’V,]:?,T’l, are constructed
as random unitary matrices, and the entries of BT’V are random variables which are
independent and identically distributed, following a normal distribution. We use
this explicit representation to perform “black-box” matrix-vector multiplications and
apply Algorithm 4.1 to retrieve the butterfly factorization.

18

This manuscript is for review purposes only.

618
619
620
621
622
623
624
625
626
627
628
629

640
641
642
643
644
645
646

The memory costs for varying n with fixed » = 8 when using the proposed algo-
rithm and the randomized SVD-based reference algorithm in [14] are plotted in Figure
7.1(a). We set p = 2 and 79 = 4 in Algorithm 4.1. The proposed algorithm requires
only O(nlogn) memory as opposed to the reference algorithm, which requires O(n'5)
memory.

Next, the performance of the proposed parallelization scheme is demonstrated
by applying Algorithm 4.1 to the butterfly representation with n = 2.56 x 10% and
r = 10. Figure 7.1(b) plots the runtimes of Algorithm 4.1 and a single matvec with
the exact butterfly in both hybrid and column-wise data layouts, for process counts
ranging from 16 to 2048. As predicted by Table 6.1, the hybrid data layout yields a
substantially lower communication cost in both matvec and factorization. As a result,
we obtain up to 4x speedups for a single matvec comparing the hybrid layout to the
column-wise layout; also, the runtime of Algorithm 4.1 is 25% faster.

A Reference — O(n')
= Proposed — O(nlogn)

Memory (MB)
5,:

3 n 5 "
10 10 10 10° 16 32 64 128 256 512 1024 2048 4096
Core count

Fic. 7.1. (a) Memory for applying Algorithm 4.1 and the reference algorithms to an exact
butterfly representation. (b) Runtime for applying Algorithm 4.1 and matriz-vector multiplications
to the exact butterfly representation with hybrid and column-wise patterns for varying core counts.

7.2. 2D Helmholtz kernel. Next, consider the following wave scattering ex-
ample. Let C' and C? denote two disjoint curves. Suppose C'! and C? are partitioned
into 7 and m constant-sized segments C} and C%, i = 1,...,n, j = 1,...,m. Let ko
denote the wavenumber, then m,n = O(ky). Consider the following m x n matrix A

(7.2) A=z (z")!
(7.3) 2= /c Hy? (kolp} = pl)dp, i.j = 1,..m
J
(7.4 22y = [B olg? oo, 1= 1, 5= 1

Here, HZ() is the zeroth-order Hankel function of the second kind, p is a position
vector on O, pl and p? denote the center of segment C} and C?. In principle,
the n x n matrix (Z'1)~! relates the equivalent source on C! to the incident fields
on C', and the m x n matrix Z2! computes fields observed on C? scattered by the
source on C''. The matrix A in (7.2) resembles the scattering matriz as it relates the
incident fields on C?! to its scattered fields on C? [10,20]. In what follows, we seek a
butterfly-compressed representation of the matrix A.

19

This manuscript is for review purposes only.

’ n | L] e [r] error [Time (sec) [Memory (MB) |
20000 9 | 3E-04 | 10 | 3.63E-04 | 3.61E401 1.68E+01
80000 11 | 3E-04 | 10 | 4.22E-04 | 3.27TE+402 7.71E+01
320000 | 13 | 3E-04 | 10 | 4.98E-04 | 3.27E+403 3.47E+02
1280000 | 15 | 3E-04 | 10 | 7.38E-04 | 3.02E+404 1.58E+403

20000 9 | 3E-05 | 12 | 2.45E-05 | 7.80E+401 3.13E4-01
80000 11 | 3E-05 | 12 | 2.39E-05 | 7.21E+402 1.32E+02
320000 | 13 | 3E-05 | 12 | 2.37E-05 | 6.46E+403 5.99E4-02
1280000 | 15 | 3E-05 | 12 | 3.26E-05 | 5.87E4-04 2.64E4-03

20000 9 | 3E-06 | 14 | 8.09E-06 | 8.10E+401 3.71E4-01
80000 | 11 | 3E-06 | 14 | 8.39E-06 | 7.82E+402 1.71E4-02
320000 | 13 | 3E-06 | 14 | 9.11E-06 | 7.17TE403 7.92E+02

1280000 | 15 | 3E-06 | 14 | 9.57E-06 | 6.17E+04 3.56E+03
TABLE 7.1
Time, memory and measured error for computing a hybrid factorization of (7.2) using the
proposed algorithm with varying matriz size n and tolerance €.

647 In this example, suppose C' and C? are two parallel lines with length D and
648 their respective distance D, where D is set to 1 m. It is well known that, for elon-
619 gated structures [22,26], Z!! and its inverse have compressed representations using
650 H-matrix or other low-rank factorization-based hierarchical techniques, requiring at
651 most O(nlogn) computation and memory resources [3,6,23]. In addition, Z2! can be
652 compressed by the butterfly factorization requiring O(nlogn) computation and mem-
653 ory resources [20,21]. Therefore, A and its transpose can be applied to any vector in
654 O(nlogn) operations irrespective of wavenumber ko.

655 To compute a butterfly-compressed representation of A using the proposed algo-
656 rithm, the lengths of line segments C} and C? are set to approximately 0.05\ with
657 X = 27 /ko denoting the wavelength. The sizes of the leaf-level point sets T, and S,
658 are set to approximately 39. The matrices (Z'1)~! and Z?! are compressed respec-
659 tively with the H-matrix and butterfly factorization with a high accuracy (tolerance
660 €= 1078), respectively. Note that these compressed representations are used instead
661 of Ain (7.1) and in black-box multiplications.

10°

A Reference — O(n”)
= Proposed —O(nlogn)

Memory (MB)

Fic. 7.2. (a) Factorization and one black-box matvec times and (b) memory for applying
Algorithm 4.1 and the reference algorithms to (7.2).

662 The computational results with butterfly level L = 9,11,13,15and A = 9.76 x 10 5m,J}
663 2.44 x 10~ 5m, 6.10 x 10~ 5m, 1.52 x 10~ m for different tolerances e = 3 x 10~%,3 x 107°,3 x 10~ 6]
20

This manuscript is for review purposes only.

664
665
666
667
668
669
670
671
672
673
674

675
676
677

678

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

695
696
697

698

are listed in Table 7.1. We set p = 2 and r9 = 4 in Algorithm 4.1. The measured
error scales proportional to L as predicted in Theorem 5.3. For € = 1073, the compu-
tationally most expensive case (when n = 1.28 x 10%) requires about 9 h CPU time
and 1.6 GB memory. Moreover, the memory cost and the factorization time obey the
predicted O(nlogn) and O(n'-5logn) scaling estimates.
The computation time and memory cost with L = 8,...,15 and ¢ = 1072 are
plotted in Figure 7.2 using the proposed algorithm and the reference algorithm in
[14]. The proposed algorithm is slightly slower than the reference algorithm as it
requires slightly more testing vectors to reduce the memory cost. That said, the
proposed algorithm requires much less memory than the reference algorithm (see
Figure 7.2(b)).

7.3. 3D Helmholtz kernel. Finally, we consider the wave interactions between
two semi-sphere surfaces C' and C? of unit radius adjacent to each other. Each semi-
sphere is discretized via the Nystrém method into n sample points. We seek a butterfly
factorization of the following n x n matrix A:

exp(i27k|p; — pjl)

(7.5) Ay =
’ lpi — pjl

with p; and p; denoting sample point i and j on C' and C?, respectively. The
wavenumber x is set such that n = 50x2 /7 represents approximately 10 sample points
per wavelength. We first compute A ~ (UFRE-IRE=2. . ROBY(W'WI=1 . . WV0)
with e = 107! and use the result for (7.1) and the black-box multiplications.

The computational results with butterfly level L = 8,10, 12 for different tolerances
e=3x107°,3x1077,3 x 10723 x 10~ are listed in Table 8.1. We set p = 4 and
ro = 64 in Algorithm 4.1. These experiments use 2 Cori nodes with a total of 64
MPI processes. The proposed algorithm achieves the desired accuracies predicted
by Theorem 5.3. The computation time, memory and observed rank with e = 1072
are plotted in Figure 8.1 using the proposed algorithm. Despite the O(n%2%) rank
scaling (see Figure 4.1(b) as an illustration), Algorithm 4.1 still attains O(n'-3logn)
computation and O(nlogn) memory complexities as estimated in subsection 4.5.2. In
addition, the estimated memory usage with the reference algorithm is also plotted in
Figure 8.1(b), the proposed algorithm requires much less memory in comparison.

7.4. Composition of two Fourier integral operators. Finally, consider the
following n xn matrix which represents discretization of the composition of two Fourier
integral operators:

(7.6) A=F'KF?
where

F}'; = exp(w:&; + &; sin(27;) /8)

»J
FiQ,j eXp(szj + Izzfj/IG)

represent the two discretized Fourier integral operators with z; = (i—1)/n, £ = j—1,
i,j <n,and K; ; = exp(2n(i — 1)(j — 1)/n) is the discretized Fourier transform. We
first compress F'!, K, F? as three butterflies with ¢ = 1076 and then use the product
of three butterflies for (7.1) and the black-box multiplications.

The computational results with butterfly level L = 10,12, 14 for different tol-
erances € = 3 x 1073,3 x 107°,3 x 1076 are listed in Table 8.2. We set p = 4 and

21

This manuscript is for review purposes only.

715
716
eve
718
719
720
721

-
w N

ot o C

(=3

J

g9~ 1
SN N NN

N DN
© oo

I B B

ro = 32 in Algorithm 4.1. It’s worth noting that although F', K and F? permit
butterfly ranks independent of n and L, their product A exhibits increasing butterfly
ranks.

The computation time and memory cost with L = 10,11,12,13,14 and ¢ =
3 x 107° are plotted in Figure 8.2 using the proposed algorithm. Despite the rank
increase, the proposed algorithms can achieve O(n!-°logn) computation and O(nlogn)
memory complexities as estimated in subsection 4.5.2.

8. Conclusion and discussion. This paper presented a fast and memory-
efficient randomized algorithm for computing the butterfly factorization of a matrix
assuming the availability of a black-box algorithm for applying the matrix and its
transpose to a vector. The proposed algorithm applies the matrix and its trans-
pose to structured random vectors to reconstruct the orthonormal row and column
bases of judiciously-selected low-rank blocks of the (assumed) butterfly-compressible
matrix. The algorithm only requires O(n!-®logn) computation and O(nlogn) stor-
age resources for matrices arising from the integral equation based discretization of
both 2D and 3D Helmholtz problems using either weak or strong admissibility sep-
aration criteria. The accuracy of the proposed algorithm only weakly depends on
the number of butterfly levels. The computation time of the algorithm can be re-
duced leveraging distributed-memory parallelism. We expect that the proposed al-
gorithm will play an important role in constructing both dense and sparse, fast and
parallel, hierarchical matrix-based direct solvers for high-frequency wave equations.
The code described here is part of the Fortran/C++ solver package ButterflyPACK
(https://github.com/liuyangzhuan /ButterflyPACK), freely available online. The in-
tegration of butterfly factorizations into the sparse solver package STRUMPACK is
currently in progress.

Acknowledgments. This research was supported in part by the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the U.S. Department of En-
ergy Office of Science and the National Nuclear Security Administration, and in part
by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific
Computing Research, Scientific Discovery through Advanced Computing (SciDAC)
program through the FASTMath Institute under Contract No. DE-AC02-05CH11231
at Lawrence Berkeley National Laboratory.

This research used resources of the National Energy Research Scientific Comput-
ing Center (NERSC), a U.S. Department of Energy Office of Science User Facility
operated under Contract No. DE-AC02-05CH11231.

10°

u Factor A Matvec = Rank T 250
—O(n'logn) = -O(nlogn) —O(n"*)

Time (sec)

Memory (MB)

A Reference—O(n'?)

= Proposed —O(nlogn)| |
10° 10°
n n

Fic. 8.1. (a) Times for factorization and one black-box matvec (left y-azis), observed rank
(right y-azis) and (b) memory for applying Algorithm 4.1 and the reference algorithms to (7.5).

22

This manuscript is for review purposes only.

https://github.com/liuyangzhuan/ButterflyPACK

| n | L] e [r | error [Time (sec) | Memory (MB) |
23806 8 | 3E-05 | 181 | 1.14E-04 | 3.36E+400 1.37E+02

94024 | 10 | 3E-05 | 252 | 1.29E-04 | 2.14E401 5.62E+02
379065 | 12 | 3E-05 | 354 | 1.52E-04 | 1.71E+402 2.37TE4-03

23806 | 8 | 3E-07 | 271 | 1.09E-06 | 7.40E+00 3.37TE+-02
94024 | 10 | 3E-07 | 371 | 1.22E-06 | 4.94E401 1.41E4-03
379065 | 12 | 3E-07 | 522 | 1.31E-06 | 3.93E+02 5.94E+03

23806 | 8 | 3E-09 | 362 | 1.05E-08 | 1.50E+01 6.72E4-02
94024 | 10 | 3E-09 | 499 | 1.11E-08 | 1.01E+402 2.85E+03
379065 | 12 | 3E-09 | 705 | 1.25E-08 | 7.98E+402 1.22E+04

23806 | 8 | 3E-11 | 474 | 8.46E-11 | 2.70E+01 1.25E4-03
94024 | 10 | 3E-11 | 634 | 1.69E-10 | 1.94E+402 5.35E4-03

379065 | 12 | 3E-11 | 852 | 8.74E-11 | 1.69E403 2.30E+04
TABLE 8.1
Time, memory and measured error for computing a hybrid factorization of (7.5) using the
proposed algorithm with varying matriz size n and tolerance €.

| n [L] e | r | error | Time (sec) [Memory (MB) |
4000 | 10 | 3E-03 | 26 | 1.79E-02 | 6.3TE400 2.24E+01

16000 | 12 | 3E-03 | 43 | 2.67E-02 | 6.99E+01 1.13E+4-02
64000 | 14 | 3E-03 | 89 | 3.86E-02 | 9.06E+02 5.82E4-02

4000 | 10 | 3E-05 | 31 | 1.83E-04 | 1.00E+01 4.02E+4-01
16000 | 12 | 3E-05 | 54 | 4.75E-04 | 1.12E4-02 2.04E4-02
64000 | 14 | 3E-05 | 115 | 1.33E-03 | 1.52E+4-03 1.01E+403

4000 | 10 | 3E-06 | 29 | 1.64E-05 | 1.21E+01 4.72E401
16000 | 12 | 3E-06 | 61 | 3.80E-05 | 1.37E+402 2.50E+4-02

64000 | 14 | 3E-06 | 123 | 8.34E-05 | 1.85E+03 1.29E+03
TABLE 8.2
Time, memory and measured error for computing a hybrid factorization of (7.6) using the
proposed algorithm with varying matriz size n and tolerance €.

Memory (MB)

10 4000 8000 16000 32000 64000 4000 8000 16000 32000 64000
n n

Fi1G. 8.2. (a) Times for factorization and one black-box matvec and (b) memory for applying
Algorithm 4.1 and the reference algorithms to (7.6).
743 REFERENCES

744 [1] J. BREMER, Z. CHEN, AND H. YANG, Rapid application of the spherical harmonic transform

23

This manuscript is for review purposes only.

3 =1 =1 =7 -1
ot Ot Ot Ot Ot Ut
AN =

~
ot
-~

-~
ot
oo

22]

23]

24]

[25]

B < o< <E

=

via interpolative decomposition butterfly factorization, 2020, https://arxiv.org/abs/2004.
11346.

. CanpEs, L. DEMANET, AND L. YING, A fast butterfly algorithm for the computation of

Fourter integral operators, Multiscale Modeling & Simulation, 7 (2009), pp. 1727-1750.

. CHANDRASEKARAN, P. DEwWILDE, M. Gu, W. Lyons, AND T. PALS, A fast solver for hss

representations via sparse matrices, STAM Journal on Matrix Analysis and Applications,
29 (2007), pp. 67-81.

. ENaqQuisT AND H. ZHAO, Approzimate separability of the green’s function of the helmholtz

equation in the high frequency limit, Communications on Pure and Applied Mathematics,
71 (2018), pp. 2220-2274, https://doi.org/10.1002/cpa.21755.

. GorMAN, G. CHAVEZ, P. GHYSELS, T. MARY, F.-H. ROUET, AND X. S. LI, Robust and
accurate stopping criteria for adaptive randomized sampling in matriz-free hierarchically
semiseparable construction, STAM Journal on Scientific Computing, 41 (2019), pp. S61—
S85.

. GRASEDYCK AND W. HACKBUsCH, Construction and arithmetics of H-matrices, Computing,

70 (2003), pp. 295-334.

. Guo, J. Hu, AND E. MICHIELSSEN, On MLMDA /butterfly compressibility of inverse integral
operators, IEEE Antennas and Wireless Propagation Letters, 12 (2013), pp. 31-34.

. Guo, Y. Liu, J. Hu, AND E. MICHIELSSEN, A butterfly-based direct integral-equation solver
using hierarchical LU factorization for analyzing scattering from electrically large conduct-
ing objects, IEEE Transactions on Antennas and Propagation, 65 (2017), pp. 4742-4750.

. HaLkO, P. MARTINSSON, AND J. TROPP, Finding structure with randomness: probabilistic
algorithms for constructing approximate matriz decompositions, SIAM Review, 53 (2011),
pp. 217-288.

. HAo, P. MARTINSSON, AND P. YOUNG, An efficient and highly accurate solver for multi-

body acoustic scattering problems involving rotationally symmetric scatterers, Computers
& Mathematics with Applications, 69 (2015), pp. 304 — 318.

W. HOCKNEY, The communication challenge for MPP: Intel Paragon and Meiko CS-2,
Parallel Comput., 20 (1994), p. 389-398.

. HORMANDER, Fourier integral operators. i, Acta Math., 127 (1971), pp. 79-183.

. Lt AND H. YANG, Interpolative butterfly factorization, STAM Journal on Scientific Comput-
ing, 39 (2017), pp. A503-A531.
L1, H. YanG, E. R. MArTIN, K. L. HO, AND L. YING, Butterfly factorization, Multiscale
Modeling & Simulation, 13 (2015), pp. 714-732.
L1, H. YANG, AND L. YING, A multiscale butterfly algorithm for multidimensional Fourier
integral operators, Multiscale Modeling & Simulation, 13 (2015), pp. 614-631.
L1, H. YANG, AND L. YING, Multidimensional butterfly factorization, Applied and Compu-
tational Harmonic Analysis, (2017).
. LIBERTY, F. WOOLFE, P.-G. MARTINSSON, V. ROKHLIN, AND M. TYGERT, Randomized algo-
rithms for the low-rank approximation of matrices, Proceedings of the National Academy
of Sciences, 104 (2007), pp. 20167-20172.

. LiN, J. Lu, AND L. YING, Fast construction of hierarchical matrix representation from

matriz—vector multiplication, Journal of Computational Physics, 230 (2011), pp. 4071 —
4087, https://doi.org/https://doi.org/10.1016/j.jcp.2011.02.033.

. Liu, P. GHYsELs, L. CrAus, AND X. S. L1, Sparse approximate multifrontal factorization
with butterfly compression for high frequency wave equations, 2020, https://arxiv.org/abs/
2007.00202.

. Liu, H. Guo, AND E. MICHIELSSEN, An HSS matriz-inspired butterfly-based direct solver for
analyzing scattering from two-dimensional objects, IEEE Antennas and Wireless Propaga-
tion Letters, 16 (2017), pp. 1179-1183.

. Liu AND H. YANG, A hierarchical butterfly LU preconditioner for two-dimensional electro-
magnetic scattering problems involving open surfaces, Journal of Computational Physics,
401 (2020), p. 109014.

. MARTINSSON AND V. ROKHLIN, A fast direct solver for scattering problems involving elon-
gated structures, Journal of Computational Physics, 221 (2007), pp. 288 — 302, https:
//doi.org/https://doi.org/10.1016/j.jcp.2006.06.037.

. G. MARTINSSON AND V. ROKHLIN, A fast direct solver for boundary integral equations in
two dimensions, Journal of Computational Physics, 205 (2005), pp. 1-23.

. MICHIELSSEN AND A. BOAG, Multilevel evaluation of electromagnetic fields for the rapid solu-
tion of scattering problems, Microwave and Optical Technology Letters, 7 (1994), pp. 790—
795.

. MICHIELSSEN AND A. B0OAG, A multilevel matrixz decomposition algorithm for analyzing

24

This manuscript is for review purposes only.

https://arxiv.org/abs/2004.11346
https://arxiv.org/abs/2004.11346
https://arxiv.org/abs/2004.11346
https://doi.org/10.1002/cpa.21755
https://doi.org/https://doi.org/10.1016/j.jcp.2011.02.033
https://arxiv.org/abs/2007.00202
https://arxiv.org/abs/2007.00202
https://arxiv.org/abs/2007.00202
https://doi.org/https://doi.org/10.1016/j.jcp.2006.06.037
https://doi.org/https://doi.org/10.1016/j.jcp.2006.06.037
https://doi.org/https://doi.org/10.1016/j.jcp.2006.06.037

807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

scattering from large structures, IEEE Transactions on Antennas and Propagation, 44
(1996), pp. 1086-1093.

[26] E. MICHIELSSEN, A. BoaG, AND W. C. CHEW, Scattering from elongated objects: direct solution
in O(Nlog?N) operations, IEE Proceedings - Microwaves, Antennas and Propagation, 143
(1996), pp. 277-283.

[27] M. O’NEIL, F. WOOLFE, AND V. ROKHLIN, An algorithm for the rapid evaluation of special
function transforms, Applied and Computational Harmonic Analysis, 28 (2010), pp. 203 —
226. Special Issue on Continuous Wavelet Transform in Memory of Jean Morlet, Part I.

[28] Q. PanG, K. L. Ho, AND H. YANG, Interpolative decomposition butterfly factorization, STAM
Journal on Scientific Computing, 42 (2020), pp. A1097-A1115, https://doi.org/10.1137/
19M1294873.

[29] J. PouLsoN, L. DEMANET, N. MAXWELL, AND L. YING, A parallel butterfly algorithm, SIAM
Journal on Scientific Computing, 36 (2014), pp. C49-C65.

[30] J. M. TamAvo, A. HELDRING, AND J. M. Rius, Multilevel adaptive cross approzimation
(MLACA), IEEE Transactions on Antennas and Propagation, 59 (2011), pp. 4600-4608.

[31] M. TYGERT, Fast algorithms for spherical harmonic expansions, III, Journal of Computational
Physics, 229 (2010), pp. 6181 — 6192.

[32] H. YANG, A unified framework for oscillatory integral transforms: When to use NUFFT or
butterfly factorization?, Journal of Computational Physics, 388 (2019), pp. 103 — 122.

[33] L. YING, Sparse Fourier transform via butterfly algorithm, SIAM Journal on Scientific Com-
puting, 31 (2009), pp. 1678-1694.

25

This manuscript is for review purposes only.

https://doi.org/10.1137/19M1294873
https://doi.org/10.1137/19M1294873
https://doi.org/10.1137/19M1294873

	Introduction
	Preliminary background
	Notation
	Low-rank approximation by projection

	Butterfly factorization
	Hierarchical partitioning
	Complementary low-rank property
	Low-rank approximation of blocks
	Column-wise butterfly factorization
	Row-wise butterfly factorization
	Hybrid butterfly factorization

	Adaptive butterfly factorization via randomized matrix-vector products
	Multiplication of K(T, S) and K(T, S) by random matrices
	Computation of U, and R,
	Computation of V, and W,
	Computation of B, at level lc
	Cost Analysis
	r is constant
	r is O(n1/4)

	Error analysis
	Approximation error for the nested basis U,
	Approximation error for the nested basis V,
	Approximation error for the overall factorization

	Parallelization
	Column/Row-wise factorization
	Hybrid factorization

	Numerical results
	Exact butterfly factorization
	2D Helmholtz kernel
	3D Helmholtz kernel
	Composition of two Fourier integral operators

	Conclusion and discussion
	References

