
BUTTERFLY FACTORIZATION VIA RANDOMIZED1

MATRIX-VECTOR MULTIPLICATIONS∗2

YANG LIU§† , XIN XING‡ , HAN GUO§ , ERIC MICHIELSSEN§ , PIETER GHYSELS† , AND3

XIAOYE SHERRY LI†4

Abstract. This paper presents an adaptive randomized algorithm for computing the butterfly5
factorization of an m × n matrix with m ≈ n provided that both the matrix and its transpose can6
be rapidly applied to arbitrary vectors. The resulting factorization is composed of O(logn) sparse7
factors, each containing O(n) nonzero entries. The factorization can be attained using O(n3/2 logn)8
computation and O(n logn) memory resources. The proposed algorithm can be implemented in par-9
allel, and can apply to matrices with strong or weak admissibility conditions arising from surface in-10
tegral equation solvers as well as multi-frontal-based finite-difference, finite-element, or finite-volume11
solvers. A distributed-memory parallel implementation of the algorithm demonstrates excellent scal-12
ing behavior.13

Key word. Matrix factorization, butterfly algorithm, randomized algorithm, integral operator.14

AMS subject classifications. 15A23, 65F50, 65R10, 65R2015

1. Introduction. Butterfly factorization is an important tool for compressing16

highly oscillatory operators arising in many scientific and engineering applications,17

such as the integral-equation-based analysis of high-frequency acoustic and electro-18

magnetic scattering problems [25], the evaluation of Fourier integrals and trans-19

forms [2,33], spherical harmonic transforms [1,31], and other types of special function20

transforms [27]. The butterfly factorization of a m × n matrix with m ≈ n exists21

provided that all judiciously selected submatrices, whose row and column dimen-22

sions multiply to O(n), are numerically low-rank. Note that the submatrices can be23

non-contiguous if its rows and columns are not properly ordered. Through recursive24

low-rank factorizations of these submatrices, the operator can be represented as the25

product of O(log n) sparse matrices, each containing O(n) nonzero entries. The re-26

sulting factorization can be rapidly applied to arbitrary vectors using only O(n log n)27

computation and memory resources.28

Despite this favorable application cost, the cost of constructing a butterfly rep-29

resentation of a given operator typically scales at least as O(n2) [31]. Fortunately,30

there exist two important categories of operators that allow for fast approximation31

by a butterfly. (i) Operators that allow each element of their matrix representation32

to be evaluated in O(1) operations. This is typically the case when the butterfly33

factorization applies directly to an oscillatory operator with an explicit formula (e.g.,34

Fourier operators, special transforms, or discretized integral equations) or stored as a35

full matrix. (ii) Operators (and their adjoints) with matrix representations that can36

be applied to arbitrary vectors in quasi-linear, typically O(n log n), complexity. This37

situation typically arises when re-compressing the composition of highly-oscilatory op-38

erators, e.g., composition of Fourier integrals [12,14], matrix algebras for constructing39

discretized inverse integral operators [7]), compression of frontal matrices in multi-40

frontal sparse solvers [19], and conversion to a butterfly representation from other41

∗Version of November 11, 2020.
†Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (li-

uyangzhuan@lbl.gov, pghysels@lbl.gov, xsli@lbl.gov,).
‡School of Mathematics, Georgia Institute of Technology, GA (xxing33@gatech.edu).
§Department of Electrical Engineering and Computer Science, University of Michigan, MI

(hanguo@umich.edu, emichiel@umich.edu).

1

This manuscript is for review purposes only.

mailto:liuyangzhuan@lbl.gov
mailto:liuyangzhuan@lbl.gov
mailto:pghysels@lbl.gov
mailto:xsli@lbl.gov
mailto:xxing33@gatech.edu
mailto:hanguo@umich.edu
mailto:emichiel@umich.edu

compression formats (e.g, fast multipole methods (FMM)-like formats). Before sum-42

marizing the key features of algorithms available in these categories, it is worth men-43

tioning that this paper focuses on the development of fast butterfly algorithms for44

operators in category (ii).45

The butterfly factorization of matrices in category (i) can be constructed using46

O(n log n) computation and memory resources following the low-rank decomposition47

of judiciously selected submatrices using uniform [25], random [24], or Chebyshev48

[13, 28] proxy points. A wide variety of low-rank decompositions, including the49

interpolative decomposition (ID) [13, 28], the pseudo skeleton approximation [24],50

the adaptive cross approximation [30], and singular value decomposition (SVD) [14]51

can be used for this purpose. This type of butterfly factorization has been extended52

to multi-scale and multi-dimensional problems [15,16,25].53

Operators in category (ii), on the other hand, post bigger challenges to fast butter-54

fly construction algorithms. Existing algorithms [8,14,32] rely on random projection-55

based algorithms [9, 17] to construct low-rank decompositions of the associated sub-56

matrices, typically resulting in higher computation and memory costs than those in57

category (i). First, optimal-complexity (i.e., O(n log n)) algorithms exist when the os-58

cillatory operator allows for smooth phase recovery [32] or fast submatrix-vector mul-59

tiplications (e.g., using FMM-type algorithms). Unfortunately, these requirements are60

not met when compressing the concatenation of several Fourier operators or inverting61

integral equation operators. In addition, the iterative algorithm in [8] only exhibits62

rapid convergence for butterflies with a small number of levels. In comparison, the63

non-iterative algorithms in [8,14] apply to butterfly compressible matrices with arbi-64

trary levels, but require O(n3/2 log n) computation resources due to the multiplication65

with multiple structured random matrices to address the specific submatrices, sim-66

ilar to the peeling algorithm in [18] for constructing H−matrices. Specifically, the67

algorithm in [14] first constructs the innermost factor via randomized SVD and then68

moves towards the outermost factors using deterministic SVDs. This algorithm un-69

fortunately requires O(n3/2) storage due to the need to store information associated70

with all random vectors. In contrast, the algorithm in [8] changes the computation71

sequence to an outside-in strategy and constructs every butterfly factor with ran-72

domized SVD. Despite having a slightly higher computational cost, this algorithm73

algorithm requires only O(n log n) storage as it only stores information related to74

subsets of the structured random matrices.75

This paper presents an improved butterfly reconstruction scheme based on the76

O(n3/2 log n) computation and O(n log n) memory algorithm of [8]: (i) The new al-77

gorithm leverages an improved adaptive scheme that permits fast and accurate but-78

terfly reconstructions for matrices with non-constant butterfly ranks arising from the79

discretization of 3D surface integral equation solvers with weak admissibility. The al-80

gorithm in [8] expressly was designed for butterflies with constant rank, and exhibits81

higher computational costs when applied to cases with non-constant ranks. (ii) The82

algorithm comes with a rigorous error bound obtained using an orthogonal projec-83

tion argument that grows only weakly with matrix size. The previous algorithm, in84

contrast, does not allow for the development of a rigorous bound as it uses random85

initial guesses for the butterfly factors to propagate the multiplication results towards86

the innermost factors. (iii) The algorithm can be deployed on distributed-memory87

computers. The previous algorithm, in contrast, is inherently sequential in nature,88

limiting its scalability when used in (even parallel) H−matrix solvers [8]. The pro-89

posed algorithm represents a critical building block for constructing fast iterative and90

direct solvers for highly-oscillatory problems.91

2

This manuscript is for review purposes only.

2. Preliminary background.92

2.1. Notation. We use MATLAB notation to denote entries and subblocks of93

matrices and vectors. For example, A(i, j) denotes the (i, j)th entry of matrix A,94

and A(I, J) with index sets I and J denotes the subblock of matrix A with rows and95

columns indexed by I and J , respectively. We let diag(A1, . . . , Ak) denote a block96

diagonal matrix with blocks A1, . . . , Ak on the diagonal. We always assume A ∈ Rm×n97

and it is straightforward to extend all the following discussions to complex matrices.98

2.2. Low-rank approximation by projection. Given a matrix A ∈ Rm×n,99

we consider a rank-r approximation of A in the projection form,100

A ≈ UU>A,101

where U ∈ Rm×r has orthonormal columns and the symbol “>” denotes the transpose102

of a matrix. The product UU> projects all the columns of A onto the column space103

of U , denoted by col(U), which is of dimension r. Such a basis matrix U can be104

computed via SVD, pivoted QR, or randomized methods [17]. In this paper, we focus105

on using a typical randomized method illustrated in Algorithm 2.1 to obtain U and106

thus to construct a low-rank approximation by projection.107

Algorithm 2.1 Randomized low-rank approximation method

Input: Matrix-matrix product routine of A ∈ Rm×n, relative error tolerance ε,
initial rank guess r0, over-sampling parameter p

Output: Basis matrix U for low-rank approximation A ≈ UU>A
1: Step 1: Form a random matrix Ω ∈ Rn×(r0+p) with its entries independently

generated following the standard normal distribution.
2: Step 2: Compute W = AΩ ∈ Rm×(r0+p).
3: Step 3: Compute the column-pivoted QR decomposition of W as WP = QR

where Q ∈ Rm×(r0+p) is orthonormal, and R ∈ R(r0+p)×(r0+p) is upper triangu-
lar. Truncate the QR decomposition with relative error tolerance ε, i.e., find the
maximum index r satisfying that |R(r, r)| > ε|R(1, 1)|. Return U consisting of
the first r columns of Q.

This randomized method is extensively studied in [5,9]. Theoretically, it is shown108

that with high probability the rank-r approximation UU>A constructed by Algo-109

rithm 2.1 has nearly optimal approximation error (see Theorem 10.7 of [9]). Experi-110

mentally, this approximation usually can have actual relative error of similar scale as111

the specified relative error tolerance ε in Algorithm 2.1, i.e., ‖A− UU>A‖F /‖A‖F ∼112

O(ε). Algorithm 2.1 has O(mnr) computation cost when A is a full matrix and could113

be more efficient if any fast matrix-matrix product algorithm for A is available.114

3. Butterfly factorization. We consider the butterfly factorization of a special115

matrix K(T, S) defined by a highly-oscillatory operator K(·, ·) and point sets S and116

T . For example, consider the free-space wave interactions between 3D source points117

S and target points T where S and T are non-overlapping (weak admissibility) or118

well separated (strong admissibility). Matrix K(T, S) consists of entries K(ti, sj) =119

exp(i2πκ|ti − sj |)/|ti − sj | for all pairs (ti, sj) ∈ T × S and is a discretization of120

the 3D Helmholtz problem with wave number κ > 0. Let |T | = m and |S| = n,121

and assume that m = O(n). Other examples of highly-oscillatory operators includes122

Green’s function operators for Helmholtz equations with non-constant coefficients,123

Fourier transforms, and special function transforms.124

3

This manuscript is for review purposes only.

3.1. Hierarchical partitioning. The point sets S and T are both partitioned125

recursively into small subsets until each finest subset has the number of points inside126

less than a prescribed small constant n0. Such a partitioning of S/T is characterized127

by a partition tree whose each node corresponds to one subset. For simplicity, we128

consider bisection of the sets and denote the resulting two binary partition trees for129

S and T as TS and TT , respectively. We further assume both TS and TT are perfect130

(all levels are filled completely). Note that these assumptions can be easily lifted.131

Let Tτ be the subset of points in T corresponding to node τ in TT . For the root132

node t of TT , Tt = T ; for each nonleaf node τ ∈ TT with children τ1 and τ2, Tτ1∪Tτ2 =133

Tτ and Tτ1 ∩ Tτ2 = ∅. With slight abuse of notation, we also use τi, i = 1, . . . , 2l to134

denote all nodes at level l of TT . The same applies to the hierarchical partitioning of S,135

i.e., {Sν}ν∈TS . We assume that both TT and TS have the same depth L = O(log n) so136

that each subset associated with a leaf node has O(1) points. With such hierarchical137

partitioning of T and S, the points in T and S can be properly reordered so that138

points in each subset Tτ/Sν correspond to consecutive rows/columns in K(T, S).139

We number the levels of TT and TS from the root to the leafs. The root node is140

at level 0; its children are at level 1, etc. All the leaf nodes are at level L. At each141

level l, TT and TS both have 2l nodes.142

(b)(b) (c)(a)

Fig. 3.1. The partition trees TS and TT , and the blocks K(Tτ , Sν) for a 2-level butterfly
factorization. These blocks correspond to level l of TT and level L− l of TS with (a) l = 0 (b) l = 1
(c) l = 2.

3.2. Complementary low-rank property. It turns out that matrix K(T, S)143

satisfies the complementary low-rank property that for any level 0 ≤ l ≤ L, node τ144

at level l of TT and node ν at level (L − l) of TS , the subblock K(Tτ , Sν) has its145

numerical rank bounded by some small constant r. This constant r is referred to as146

the butterfly rank. Figure 3.1 illustrates these subblocks with a two-level partitioning147

of T and S. Such complementary low-rank property can result from certain analytic148

properties of Helmholtz kernel [4, 21, 24], Fourier transform operator [2], and many149

other highly-oscillatory operators.150

3.3. Low-rank approximation of blocks. A butterfly factorization ofK(T, S)151

compresses all blocks K(Tτ , Sν) with l = 0, 1, . . . , L for nodes τ at level l of TT and ν152

at level (L− l) of TS (referred to as the blocks at level l of the butterfly factorization)153

into low-rank form via a nested approach. There are three similar forms: (1) column-154

wise butterfly factorization, (2) row-wise butterfly factorization [2, 8, 24, 27, 31, 33],155

and (3) hybrid butterfly factorization [1,13,14,28]. Our proposed algorithm is based156

on the hybrid factorization as it leads to the lowest algorithmic complexity and the157

highest parallel efficiency among the three.158

4

This manuscript is for review purposes only.

In the following, we describe all the three forms as the column-wise and row-wise159

factorizations also serve as building blocks for the hybrid factorization. For brevity,160

we assume all blocks K(Tτ , Sν) are compressed into rank-r form.161

3.3.1. Column-wise butterfly factorization. Each K(Tτ , Sν) is compressed162

into rank-r form163

(3.1) K(Tτ , Sν) ≈ Uτ,νU>τ,νK(Tτ , Sν) = Uτ,νEτ,ν ,164

where Uτ,ν ∈ R|Tτ |×r has orthonormal columns and is referred to as the column basis165

matrix associated with (τ, ν).166

Before considering an arbitrary butterfly level L, we first illustrate the column-167

wise factorization using a simple example with L = 1. Let t and s denote the168

root nodes of TT and TS ; let τ1, τ2 and ν1, ν2 denote the leaf nodes of TT and TS .169

By the complementary low-rank property, K(Tτ1 , Ss), K(Tτ2 , Ss), K(Tt, Sν1), and170

K(Tt, Sν2) have numerical ranks at most r. First, we construct the low-rank approx-171

imations K(Tτ1 , Ss) ≈ Uτ1,sEτ1,s and K(Tτ2 , Ss) ≈ Uτ2,sEτ2,s. Next, we split each172

Eτi,s, i = 1, 2 by columns into [Eτi,ν1 , Eτi,ν2] and consider two vertical concatenations173

[Eτ1,νj ;Eτ2,νj], j = 1, 2. Since [Eτ1,νj ;Eτ2,νj] has the same row span as K(Tt, Sνj),174

it can be approximated by a rank-r form [Eτ1,νj ;Eτ2,νj] ≈ Rt,νjEt,νj where Rt,νj has175

orthonormal columns. The overall process above can be expressed as,176

K(Tt, Ss) =

[
K(Tτ1 , Ss)
K(Tτ2 , Ss)

]
≈
[
Uτ1,s

Uτ2,s

] [
Eτ1,s
Eτ2,s

]
177

=

[
Uτ1,s

Uτ2,s

] [[
Eτ1,ν1
Eτ2,ν1

] [
Eτ1,ν2
Eτ2,ν2

]]
178

≈
[
Uτ1,s

Uτ2,s

] [
Rt,ν1 Rt,ν2

] [Et,ν1
Et,ν2

]
.179

180

The last equation gives a one-level column-wise butterfly factorization of K(Tt, Ss).181

In general for L ≥ 1, the column-wise factorization proceeds as follows: At the182

leaf level L of TT , the basis matrix Uτ,ν is explicitly formed for each Tτ . At a non-183

leaf level l < L, consider a node τ at level l of TT and a node ν at level (L − l)184

of TS . Let {τ1, τ2} be the children of τ at level (l + 1) of TT and pν be the parent185

node of ν at level (L− l− 1) of TS . The low-rank approximation (3.1) of K(Tτ , Sν) is186

constructed by exploiting the available low-rank approximations of blocks K(Tτ1 , Spν)187

and K(Tτ2 , Spν) at level (l + 1) in the following nested manner.188

Since Tτ = Tτ1 ∪ Tτ2 , K(Tτ , Sν) can first be split into two blocks,189

(3.2) K(Tτ , Sν) =

[
K(Tτ1 , Sν)
K(Tτ2 , Sν)

]
.190

Meanwhile, since Sν is a subset of Spν , it follows that K(Tτa , Sν), for each child τa191

of τ , is a subblock of K(Tτa , Spν). Thus, the low-rank approximation K(Tτa , Spν) ≈192

Uτa,pνEτa,pν at level (l + 1) yields a low-rank approximation of K(Tτa , Sν) as,193

K(Tτa , Sν) ≈ Uτa,pνEτa,ν ,194

where Eτa,ν is a subset of columns in Eτa,pν corresponding to Sν . Substituting this195

approximation into (3.2) gives196

(3.3) K(Tτ , Sν) ≈
[
Uτ1,pνEτ1,ν
Uτ2,pνEτ2,ν

]
=

[
Uτ1,pν

Uτ2,pν

] [
Eτ1,ν
Eτ2,ν

]
.197

5

This manuscript is for review purposes only.

Instead of directly compressing K(Tτ , Sν), we compute a rank-r approximation198

of the last matrix above, which only has 2r rows and is far smaller than K(Tτ , Sν),199

as200

(3.4)

[
Eτ1,ν
Eτ2,ν

]
≈ Rτ,νEτ,ν ,201

where Rτ,ν has orthonormal columns. Substituting (3.4) into (3.3), we obtain a rank-r202

approximation of K(Tτ , Sν) as,203

K(Tτ , Sν) ≈
[
Uτ1,pν

Uτ2,pν

]
Rτ,νEτ,ν = Uτ,νEτ,ν ,204

where the column basis matrix Uτ,ν is205

(3.5) Uτ,ν =

[
Uτ1,pν

Uτ2,pν

]
Rτ,ν ,206

and Rτ,ν is referred to as a transfer matrix ; note that Uτ,ν still has orthonormal207

columns.208

Using (3.5), the basis matrices at any non-leaf level l are expressed in terms of209

the basis matrices at level (l + 1) via the transfer matrices. Thus, the basis matrices210

at any non-leaf level are not explicitly formed but instead recovered recursively from211

quantities at lower levels. In the end, the butterfly factorization of K(T, S) consists212

of the low-rank approximations of blocks at level 0 of TT , i.e.,213

K(T, S) =
[
K(Tt, Sν1) K(Tt, Sν2) . . . K(Tt, Sν2L)

]
214

≈
[
Ut,ν1Et,ν1 Ut,ν2Et,ν2 . . . Ut,ν2LEt,ν2L

]
(3.6)215

=
(
ULRL−1RL−2 . . . R0

)
E0,(3.7)216217

where t denotes the root node of TT , ν1, . . . , ν2L are all the leaf nodes of TS , and218

Ut,ν1 , . . . , Ut,ν2L are the corresponding column basis matrices. Expanding each Ut,νa219

using the nested form (3.5) up to the leaf level of TT , K(T, S) can be represented220

as the product of the (L + 2) matrices in (3.7) where UL = diag(Uτ1,s, . . . , Uτ2L ,s)221

consists of all the column basis matrices at level L of TT (s is the root of TS), E0 =222

diag(Et,ν1 , . . . , Et,ν2L), and each factor Rl, l = 0, . . . , L− 1 is a block diagonal matrix223

consisting of special blocks Rν for all nodes ν at level l of TS . Here, each Rν consists224

of Rτ,ν1 and Rτ,ν2 for all nodes τ at level L− l of TT as225

Rν =


Rτ1,ν1 Rτ1,ν2

Rτ2,ν1 Rτ2,ν2
. . .

. . .

Rτ
2L−l ,ν1 Rτ

2L−l ,ν2

(3.8)226

227

where {ν1, ν2} denotes the children of ν. We term UL and E0 outer factors and Rl228

inner factors. Figure 3.2(a) shows an example of a 4-level column-wise factorization.229

3.3.2. Row-wise butterfly factorization. Each K(Tτ , Sν) is compressed into230

rank-r form as231

(3.9) K(Tτ , Sν) ≈ K(Tτ , Sν)Vτ,νV
>
τ,ν = Fτ,νV

>
τ,ν ,232

6

This manuscript is for review purposes only.

(b)

(a)

(c)

4
U

3
R

2
R

1
R

0
R

0
E

4
F

4
W

3
W

2
W

1
W

0
V

4
U

3
R

2
R

2
W

1
W

0
V

2
B

Fig. 3.2. (a) Column-wise, (b) row-wise, and (c) hybrid butterfly factorizations for a 4-level
hierarchical partitioning of T and S. The blocks in black multiply to Ut,ν1Et,ν1 in (3.6), Fτ1,sV

>
τ1,s

,

and Uτ1,ν1Bτ1,ν1V
>
τ1,ν1

in (3.13), respectively.

where Vτ,ν ∈ R|Sν |×r has orthonormal columns and is referred to as the row basis233

matrix associated with (τ, ν). Just like for the column-wise factorization, we define234

the transfer matrix Wτ,ν for a non-leaf node ν as235

(3.10) Vτ,ν =

[
Vpτ ,ν1

Vpτ ,ν2

]
Wτ,ν .236

The basis and transfer matrices can be constructed upon applying the column-237

wise butterfly factorization to K(T, S)>, yielding the row-wise butterfly structure238

K(T, S) = FL
(
WLWL−1 . . .W 1V 0

)
.(3.11)239240

The outer factors are FL = diag(Fτ1,s, . . . , Fτ2L ,s) with s denoting the root of TS and241

V 0 = diag(V >t,ν1 , . . . , V
>
t,ν2L

). The block diagonal inner factors W l, l = 1, . . . , L consist242

of blocks Wτ for all nodes τ at level l− 1 of TT . Each Wτ consists of Wτ1,ν and Wτ2,ν243

for all nodes ν at level L− l + 1 of TS , as244

Wτ =



Wτ1,ν1

Wτ1,ν2

. . .

Wτ1,ν2L−l+1

Wτ2,ν1

Wτ2,ν2

. . .

Wτ2,ν2L−l+1


.(3.12)245

246

Figure 3.2(b) shows an example of a 4-level row-wise factorization.247

7

This manuscript is for review purposes only.

3.3.3. Hybrid butterfly factorization. At any level l of TT , K(Tτ , Sν) with248

all nodes τ at level l of TT and nodes ν at level (L− l) of TS form a non-overlapping249

partitioning of K(T, S). Fixing l, we can combine the computed row and column basis250

matrices Uτ,ν , Vτ,ν from both the column-wise and row-wise butterfly factorizations251

of K(T, S) above to compress K(Tτ , Sν) as252

K(Tτ , Sν) ≈ Uτ,νU>τ,νK(Tτ , Sν)Vτ,νV
>
τ,ν = Uτ,νBτ,νV

>
τ,ν .253

The hybrid butterfly factorization of K(T, S) is constructed as,254

K(T, S) =


K(Tτ1 , Sν1) K(Tτ1 , Sν2) · · · K(Tτ1 , Sνq)
K(Tτ2 , Sν1) K(Tτ2 , Sν2) · · · K(Tτ2 , Sνq)

...
...

. . .
...

K(Tτp , Sν1) K(Tτp , Sν2) · · · K(Tτp , Sνq)

255

≈


Uτ1,ν1Bτ1,ν1V

>
τ1,ν1 Uτ1,ν2Bτ1,ν2V

>
τ1,ν2 · · · Uτ1,νqBτ1,νqV

>
τ1,νq

Uτ2,ν1Bτ2,ν1V
>
τ2,ν1 Uτ2,ν2Bτ2,ν2V

>
τ2,ν2 · · · Uτ2,νqBτ2,νqV

>
τ2,νq

...
...

. . .
...

Uτp,ν1Bτp,ν1V
>
τp,ν1 Uτp,ν2Bτp,ν2V

>
τp,ν2 · · · Uτp,νqBτp,νqV

>
τp,νq

(3.13)256

=
(
ULRL−1RL−2 . . . Rl

)
Bl
(
W lW l−1 . . .W 1V 0

)
(3.14)257258

where τ1, τ2, . . . , τp are the p = 2l nodes at level l of TT , and ν1, ν2, . . . , νq are the259

q = 2L−l nodes at level (L− l) of TS .260

In this level-l hybrid butterfly factorization, these column basis matrices Uτ,ν are261

recursively defined as in (3.5) using column basis and transfer matrices in the lower262

levels of TT , and the row basis matrices Vτ,ν are recursively defined as in (3.10) using263

row basis and transfer matrices at upper levels of TT . In (3.14), the outer factors264

UL, V 0 and inner factors {Rk}, {W k} are defined in Sections 3.3.1 and 3.3.2, and the265

inner factor Bl consists of all blocks Bτ,ν at level l in (3.13). For simplicity assuming266

rτ,ν = r, Bl is a p × q block-partitioned matrix with each block of sizes qr × pr; the267

(i, j) block is a q × p block-partitioned matrix with each block of sizes r × r, among268

which the only nonzero block is the (j, i) block and equals Bτi,νj . Typically, the level269

l is set to center level lc = bL/2c. Figure 3.2(c) shows a hybrid butterfly factorization270

with L = 4 and lc = 2.271

4. Adaptive butterfly factorization via randomized matrix-vector prod-272

ucts. We propose an algorithm for constructing the butterfly factorization of a ma-273

trix A = K(T, S) using only products of A and its transpose with random vectors.274

The proposed Algorithm 4.1 returns a hybrid factorization with prescribed tolerance275

ε assuming black-box matrix-vector multiplications. With minor modifications, Al-276

gorithm 4.1 also applies to column- and row-wise factorizations albeit with a much277

higher computational cost, i.e., O(n2 log n). In what follows, we describe the four key278

components of the algorithm, including279

• The computation of K(Tτ , Sν)Ων and K(Tτ , Sν)>Γτ with random matrices280

Ων and Γτ using a black-box routine.281

• The construction of column basis matrices Uτ,ν (or transfer matrices Rτ,ν282

for non-leaf nodes τ in TT) based on matrix-vector multiplications involving283

K(T, S).284

• The construction of row basis matrices Vτ,ν (or transfer matrices Wτ,ν for285

non-leaf nodes ν in TS) based on the matrix-vector multiplications involving286

K(T, S)>.287

8

This manuscript is for review purposes only.

0
V

⋯

Γi

4
U Ω j

⋯

0
V

1
W

⋯

Γi 0
V

1
W2

W

⋯

Γi

⋯

4
U 3

R Ω j

4
U 3

R
2
R Ω j

⋯

4
U 3

R
2
R

0
V

1
W2

W
2
B

(a)

(e)

(g)

(b) (c)

(d)
(f)

Ω j

Fig. 3.3. A 4-level hybrid factorization based on matrix-vector products consists of steps that
compute (a) V 0, (b) W 0, (c) W 1, (d) U4, (e) R3, (f) R2, and (g) B2. Note that the vectors Ω̄ν or
Γ̄τ and the blocks being computed are marked with the same texture. The already-computed blocks
needed at each step are plotted in Green.

• The construction of intermediate matrices Bτa,νb in (3.13).288

4.1. Multiplication of K(Tτ , Sν) and K(Tτ , Sν)> by random matrices.289

Here we assume the existence of a black-box program to perform matrix-vector mul-290

tiplications involving K(T, S) and K(T, S)>. To use Algorithm 2.1 to compute the291

column/row basis matrices for each block K(Tτ , Sν), we multiply K(T, S) or K(T, S)>292

with structured random matrices Ω̄ν and Γ̄τ to obtain the matrices K(Tτ , Sν)Ων and293

K(Tτ , Sν)>Γτ that are used in Algorithm 2.1. As we shall see later, Ων and Γτ are294

sub-vectors of Ω̄ν and Γ̄τ . Their entries are random variables which are independent295

and identically distributed, following a normal distribution.296

Fixing a node ν at level (L−l) of TS , we compute K(Tτ , Sν)Ων with a |Sν |×(r+p)297

matrix Ων for all nodes τ at level l of TT , by multiplying K(T, S) with a sparse298

|S| × (r + p) matrix Ω̄ν whose only non-zero entries Ων are located on the rows299

corresponding to Sν . To evaluate all the multiplications K(Tτ , Sν)Ων at level l (of300

TT), 2(L−l)(r + p) matrix-vector multiplications by K(T, S) are needed.301

Similarly, fixing a node τ at level l of TT , we compute K(Tτ , Sν)>Γτ with a302

|Tτ |× (r+p) matrix Γτ for all nodes ν at level (L− l) of TS , by multiplying K(T, S)>303

with a sparse matrix Γ̄τ ∈ R|T |×(r+p) whose only non-zero entries Γτ are located on304

the rows corresponding to Tτ . To evaluate all the multiplications K(Tτ , Sν)>Γτ at305

level l (of TT), 2l(r + p) matrix-vector multiplications by K(T, S)> are needed. In306

Algorithm 4.1, the products K(Tτ , Sν)Ων and K(Tτ , Sν)>Γτ are performed on lines307

4, 23, 13, 33.308

4.2. Computation of Uτ,ν and Rτ,ν . For each leaf node τ at level L of TT309

and the root node s of TS , the column basis matrix Uτ,s can be directly computed310

using Algorithm 2.1 by evaluating K(Tτ , Ss)Ωs. In Algorithm 4.1 (line 2), the ranks311

of Uτ,s are determined by adaptively doubling the size of the random matrices Ωs for312

9

This manuscript is for review purposes only.

Algorithm 4.1 Adaptive and randomized hybrid butterfly factorization based on
matrix-vector multiplication

Input: Black-box routine for multiplying K(T, S) ∈ Rm×n and its transpose
with arbitrary matrices, over-sampling parameter p, relative error tolerance ε, initial
rank guess r0, binary partitioning trees TS and TT of L levels.

Output: K(T, S) ≈ (ULRL−1RL−2 . . . Rlc)Blc(W lcW lc−1 . . .W 1V 0) with lc =
bL/2c.

1: r = r0.
2: while not converged do . Adaptive computation of Vτ,ν at level 0
3: Form a random matrix Γt ∈ R|Tt|×(r+p) for the root node t of TT .
4: Compute K(Tt, S)>Γt.
5: for ν at level L of TS do
6: Apply Algorithm 2.1 with A = K(Tt, Sν)> to compute Vt,ν .
7: end for
8: Converge if r > max

ν
{rt,ν}. . Over all nodes ν at leaf level of TS

9: r ← 2r.
10: end while
11: while not converged do . Adaptive computation of Uτ,ν at level L
12: Form a random matrix Ωs ∈ R|Ss|×(r+p) for the root node s of TS .
13: Compute K(T, Ss)Ωs.
14: for τ at level L of TT do
15: Apply Algorithm 2.1 with A = K(Tτ , Ss) to compute Uτ,s.
16: end for
17: Converge if r > max

τ
{rτ,s}. . Over all nodes τ at leaf level of TT

18: r ← 2r.
19: end while
20: for l = 1 to lc do . Computation of Wτ,ν

21: for τ at level l of TT do
22: Form Γτ ∈ R|Tτ |×(r+p) with r = max

ν
{rpτ ,ν1 + rpτ ,ν2}. . Over all nodes

ν at level L− l of TS
23: Compute K(Tτ , S)>Γτ .
24: for ν at level L− l of TS do

25: Compute

[
V >pτ ,ν1

V >pτ ,ν2

]
(K(Tτ , Sν)>Γτ) = AΓτ

26: Apply Algorithm 2.1 for Wτ,ν with A above.
27: end for
28: end for
29: end for
30: for l = L− 1 to lc do . Computation of Rτ,ν and Bτ,ν
31: for ν at level L− l of TS do
32: Form Ων ∈ R|Sν |×(r+p) with r = max

τ
{rτ1,pν + rτ2,pν}.. Over all nodes τ

at level l of TT
33: Compute K(T, Sν)Ων .
34: Compute V >τ,νΩν if l = lc. . V >τ,ν is not explicitly computed.
35: for τ at level L− l of TT do

36: Compute

[
U>τ1,pν

U>τ2,pν

]
(K(Tτ , Sν)Ων) = AΩν

37: Apply Algorithm 2.1 for Rτ,ν with A above.
38: Compute Bτ,ν using (4.1) if l = lc.
39: end for
40: end for
41: end for

10

This manuscript is for review purposes only.

Uτ,s until convergence. The iteration is terminated if the rank estimate r exceeds the313

maximum revealed rank max
ν
{rt,ν} (see line 17). This heuristic stopping criterion is314

used as a more rigorous criterion requires expensive computation of the approximation315

error.316

For each non-leaf node τ at level lc ≤ l < L of TT and each node ν at level (L− l)317

of TS , the matrix to be compressed in (3.3) when computing Rτ,ν can be expressed318

as,319 [
Eτ1,ν
Eτ2,ν

]
=

[
U>τ1,pν

U>τ2,pν

]
K(Tτ , Sν) ≈ Rτ,νEτ,ν .320

Thus, Rτ,ν can be computed via Algorithm 2.1 using the products321 [
U>τ1,pν

U>τ2,pν

]
K(Tτ , Sν)Ων .322

Note that no rank adaptation is needed for Rτ,ν in Algorithm 4.1 as the rank rτ,ν323

is bounded by rτ1,pν + rτ2,pν . The dimensions of the random matrices Ων therefore324

are chosen using the rank estimate r = max
ν
{rτ1,pν + rτ2,pν} on line 32. This process325

recursively traverses TT from the leafs to center level lc and TS from the root to center326

level lc.327

4.3. Computation of Vτ,ν and Wτ,ν . The computation of Vτ,ν and Wτ,ν re-328

sembles the above computation of Uτ,ν and Rτ,ν , but uses the multiplication results329

K(Tτ , Sν)>Γτ . Vτ,ν for leaf nodes is computed adaptively on line 11 while Wτ,ν for330

non-leaf nodes is computed using Algorithm 2.1 using the multiplication results331 [
V >pτ ,ν1

V >pτ ,ν2

]
K(Tτ , Sν)>Γτ .332

where the dimensions of the random matrices Γτ are chosen using the rank estimate333

on line 22 without adaptation. This recursive construction starts from the leaf level334

of TS and ends at center level lc.335

4.4. Computation of Bτ,ν at level lc. It follows from (3.13) that for each node336

τ at level lc of TT and node ν at level (L− lc) of TS , K(Tτ , Sν) is approximated as337

K(Tτ , Sν) ≈ Uτ,νBτ,νV >τ,ν .338

Using the existing multiplication results K(Tτ , Sν)Ων , Bτ,ν can be estimated as339

Bτ,ν = argmin
B∈Rrτ,ν×rτ,ν

‖ (K(Tτ , Sν)Ων)− Uτ,νBV >τ,νΩν‖F340

= U>t,ν (K(Tt, Sν)Ων) (V >τ,νΩν)>.(4.1)341342

Note that Algorithm 4.1 computes and stores K(Tτ , Sν)Ω̄ν (or K(Tτ , Sν)>Γ̄τ)343

only for one Ων at a time, therefore the algorithm is memory efficient. As an example,344

Figure 3.3 illustrates the procedure for constructing a 4-level hybrid factorization.345

Note that the random matrices for the inner factors are structured.346

4.5. Cost Analysis. Let c(n) denote the number of operations for the black-347

box multiplication of K(S, T)Ω or K(T, S)>Ω for an arbitrary n× 1 vector Ω. In the348

best-case scenario, c(n) = O(n log n) as K(T, S) is typically stored in a compressed349

form using O(n log n) storage units; in the worst-case scenario, c(n) = O(n2) when350

11

This manuscript is for review purposes only.

the matrix is explicitly stored in full. In what follows, we assume c(n) = O(n log n).351

Let r = maxτ,ν{rτ,ν} denote the maximum butterfly rank. Here we analyze the com-352

putation and memory costs of Algorithm 4.1 when applied to two classes of butterfly-353

compressible matrices: (i) r is constant (up to a logarithmic factor). (ii) r = O(n1/4).354

4.5.1. r is constant. This case typically occurs when the matrix arises from the355

discretization of 2D surface integral equations exploiting strong or weak admissibility356

conditions [7, 20, 21], 3D surface integral equation solvers using strong admissibility357

[8], low-dimensional Fourier operators [14], etc. For example, Figure 4.1(a) shows358

the center-level partitioning of a 2D curve used in surface integral-based Helmholtz359

equation solvers in which all blocks have constant rank except for O(1) ones with rank360

O(log n). (see [21] for a proof).361

As described in subsection 4.1, there are 2l(r+ p) black-box matrix-vector multi-362

plications by K(T, S)> at level l = 0, . . . , lc and 2(L−l)(r+p) black-box matrix-vector363

multiplications by K(T, S) at level l = L, . . . , lc. Therefore the black-box multiplica-364

tions require a total of 2(r+p)(1 + 2 + . . .+ 2lc)c(n) = O(rn1/2c(n)) = O(rn3/2 log n)365

operations. It is worth noting that the multiplications on lines 26 and 37 only involve366

partial factors Vpτ ,νa and Uτa,pν and their computational cost is dominated by that367

of the black-box multiplications. In addition, the algorithm only stores multiplication368

results for each random matrix of dimensions n × (r + p) and the computed butter-369

fly factors. The computation and memory costs of Algorithm 4.1 therefore scale as370

O(n3/2 log n) and O(n log n), respectively.371

4.5.2. r is O(n1/4). This case often results from discretizing 3D surface integral372

equations using weak admissibility. For example, Figure 4.1(b) shows the center-level373

partitioning of a 3D surface used in surface integral methods for Helmholtz equations.374

Out of the 16× 16 = 256 center-level blocks of size O(n1/2)×O(n1/2), only 4 blocks375

have rank O(n1/4) representing interactions between adjacent pairs. As the adjacent376

pair is typically co-planar, the edge shared by the pair can serve as the proxy surface377

that represent interactions between the pair. Therefore the rank is bounded by the378

edge dimension O(n1/4) (See [4]). We claim, without proof, that except for O(n1/4)379

blocks with rank of at most O(n1/4) at each level, the rest has constant rank.380

We only need to focus on the construction of blocks with non-constant ranks as the381

rest has been analyzed above. We first analyze the cost of black-box multiplications on382

lines 4 and 23. For all blocks at level 0 ≤ l ≤ lc, denote Nl = {τ |rτ,ν non constant}.383

It can be verified that |Nl| = O(2bl/2c) and each τ ∈ Nl requires O(r + p) = O(n1/4)384

matrix-vector multiplications. Therefore the black-box multiplications K(Tτ , S)>Γτ385

require a total of
∑lc
l=0 |Nl|O(n1/4)O(n log n) = O(n1/2c(n)) = O(n3/2 log n) opera-386

tions. A similar number of operations is required for K(T, Sν)Ων on line 13 and 33. In387

addition, since each computed factor has O(n1/4) blocks of rank O(n1/4), the storage388

cost is O(n1/4)O(n1/2)L ≤ O(n log n). Overall the computation and memory costs of389

Algorithm 4.1 are of the same orders as those in the case of constant r.390

5. Error analysis. In Algorithm 4.1, the low-rank approximation of each indi-391

vidual block constructed by Algorithm 2.1 has O(ε) relative error with high proba-392

bility, where ε is the specified relative error tolerance. As a result, the relative error393

of the constructed butterfly factorization is also probabilistic. Rigorously analyzing394

such a probabilistic error is out of the scope of this paper. To partially analyze the395

proposed algorithm, we instead provide an error analysis for a deterministic variant396

(with minor modifications) of Algorithm 4.1. Specifically, we replace the random397

matrices Γt ∈ R|Tτ |×(r+p), Ωs ∈ R|Sν |×(r+p) with identity matrices I ∈ R|Tτ |×|Tτ |,398

12

This manuscript is for review purposes only.

(a) (b)

1/4()O n

1/2() O n nodes
1/2() O n nodes

1/2() O n nodes

1/2() O n nodes

Fig. 4.1. (a) Center-level geometrical partitioning of a 2D curve for a 4-level butterfly factoriza-
tion of a weak-admissible matrix. The ranks for all center-level blocks are bounded by O(logn). (b)
Center-level geometrical partitioning of a 3D surface for a 8-level butterfly factorization of a weak-
admissible matrix. There are O(n1/4) center-level blocks with rank O(n1/4) (with the interaction
pairs denoted by the red arrows)

I ∈ R|Sν |×|Sν | in Algorithm 4.1. On the one hand, this deterministic variant needs399

to multiply many more vectors than necessary (note that this variant is only used400

for error analysis purpose). On the other hand, black-box multiplication with iden-401

tity explicitly forms each block A and Algorithm 2.1 reduces to a deterministic QR402

decomposition algorithm. The resulting approximation of A thus has a deterministic403

error bound.404

Denote ε0 as the maximum relative error ‖A− UU>A‖F /‖A‖F of all the blocks405

A in Algorithm 4.1 that are directly compressed by Algorithm 2.1. Given the relative406

error tolerance ε, in the above deterministic variant, ε0 ∼ O(ε); and in the randomized407

Algorithm 4.1, ε0 can be viewed as a random variable and is of scale O(ε) only with408

probability. In the following, we provide an error analysis using the deterministic409

variant of Algorithm 4.1.410

Recall that the construction of all three forms of butterfly factorizations starts411

from the leaf level of either TT or TS and moves towards to the root level. In this412

procedure, the corresponding low-rank blocks at each level are compressed level-by-413

level by the nested approach. The error analysis below proceeds in the same manner414

as we first analyze the error induced by the compression of blocks at the leaf level415

and we then accumulate the error induced at each non-leaf level with those from the416

previous levels.417

5.1. Approximation error for the nested basis Uτ,ν . Given any level lc ≤418

l ≤ L of TT , matrix K(T, S) is partitioned into blocks {K(Tτ , Sν)} with τ at level l of419

TT and ν at level (L− l) of TS , and K(Tτ , Sν) is approximated by Uτ,νU
>
τ,νK(Tτ , Sν)420

where Uτ,ν is the nested basis computed in subsection 4.2. Theorem 5.1 states that421

this approximation for all blocks at level l has an error bounded by ε0
√
L− l + 1‖A‖F .422

Theorem 5.1. Given a level l in the range L > l > lc, the low-rank approxima-423

tions of all the blocks K(Tτ , Sν) at level l (τ at level l of TT and ν at level (L − l)424

of TS) based on the computed column basis matrices Uτ,ν have approximation errors425

bounded by426

(5.1)
∑

τ,ν at level l

‖K(Tτ , Sν)− Uτ,νU>τ,νK(Tτ , Sν)‖2F 6 (L− l + 1)ε20‖K(T, S)‖2F ,427

where the summation of τ is over the nodes at level l of TT and the summation of ν428

is over the nodes at level (L− l) of TS.429

13

This manuscript is for review purposes only.

Proof. We prove the theorem by induction for level l changing from L to lc. First,430

for l = L, the column basis matrix Uτ,s for block K(Tτ , Ss) at level L of TT is directly431

computed by Algorithm 2.1. Thus, based on the above relative error assumption, the432

approximation error is bounded by433

‖K(Tτ , Ss)− Uτ,sU>τ,sK(Tτ , Ss)‖2F 6 ε20‖K(Tτ , Ss)‖2F .434

Moreover, summing over all nodes τ on both sides of the above inequality proves (5.1)435

for l = L.436

Assume that (5.1) holds true for level (l+ 1). For each node τ at level l of TT , let437

ν1 and ν2 be siblings at level (L − l) of TS . Let {τ1, τ2} be the children of τ at level438

(l + 1) of TS and ν be the parent node of {ν1, ν2} at level (L − l − 1) of TS . Note439

that K(Tτ , Sν1) and K(Tτ , Sν2) are compressed blocks at level l while K(Tτ1 , Sν) and440

K(Tτ2 , Sν) are compressed blocks at level l + 1. Moreover, these two sets of blocks441

correspond to the same large block in K(T, S), i.e.,442

[
K(Tτ , Sν1) K(Tτ , Sν2)

]
=

[
K(Tτ1 , Sν)
K(Tτ2 , Sν)

]
= K(Tτ , Sν).443

Recall that Uτ,ν1 is computed in a nested fashion as444

K(Tτ , Sν1) =

[
K(Tτ1 , Sν1)
K(Tτ2 , Sν1)

]
≈
[
Uτ1,ν

Uτ2,ν

] [
U>τ1,νK(Tτ1 , Sν1)
U>τ2,νK(Tτ2 , Sν1)

]
445

≈
[
Uτ1,ν

Uτ2,ν

]
Rτ,ν1R

>
τ,ν1

[
U>τ1,νK(Tτ1 , Sν1)
U>τ2,νK(Tτ2 , Sν1)

]
= Uτ,ν1U

>
τ,ν1K(Tτ , Sν1),446

447

where Rτ,ν1 is computed by applying Algorithm 2.1 to the intermediate matrix above,448

i.e.,449

(5.2)

[
U>τ1,νK(Tτ1 , Sν1)
U>τ2,νK(Tτ2 , Sν1)

]
≈ Rτ,ν1R>τ,ν1

[
U>τ1,νK(Tτ1 , Sν1)
U>τ2,νK(Tτ2 , Sν1)

]
.450

The approximation error of block K(Tτ , Sν1) at level l can be estimated as451

‖K(Tτ , Sν1)− Uτ,ν1U>τ,ν1K(Tτ , Sν1)‖2F452

=

∥∥∥∥K(Tτ , Sν1)−
[
Uτ1,ν

Uτ2,ν

] [
U>τ1,νK(Tτ1 , Sν1)
U>τ2,νK(Tτ2 , Sν1)

]∥∥∥∥2
F

453

+

∥∥∥∥[Uτ1,ν Uτ2,ν

] [
U>τ1,νK(Tτ1 , Sν1)
U>τ2,νK(Tτ2 , Sν1)

]
− Uτ,ν1U>τ,ν1K(Tτ , Sν1)

∥∥∥∥2
F

454

=
∥∥K(Tτ1 , Sν1)−Uτ1,νU>τ1,νK(Tτ1 , Sν1)

∥∥2
F

+
∥∥K(Tτ2 , Sν1)− Uτ2,νU>τ2,νK(Tτ2 , Sν1)

∥∥2
F

455

+

∥∥∥∥[U>τ1,νK(Tτ1 , Sν1)
U>τ2,νK(Tτ2 , Sν1)

]
−Rτ,ν1R>τ,ν1

[
U>τ1,νK(Tτ1 , Sν1)
U>τ2,νK(Tτ2 , Sν1)

]∥∥∥∥2
F

456

457

where the first equation is due to the orthogonality between the columns from the two458

bracketed terms, and the second equation follows from the unitary invariance of the459

Frobenius norm, as Uτ1,ν and Uτ2,ν both have orthonormal columns. The last term460

above, which is the approximation error of (5.2), is guaranteed to satisfy461

ε20

∥∥∥∥[U>τ1,νK(Tτ1 , Sν1)
U>τ2,νK(Tτ2 , Sν1)

]∥∥∥∥2
F

6 ε20

∥∥∥∥[K(Tτ1 , Sν1)
K(Tτ2 , Sν1)

]∥∥∥∥2
F

= ε20‖K(Tτ , Sν1)‖2F .462

14

This manuscript is for review purposes only.

Similarly, we can estimate the approximation error of block K(Tτ , Sν2) at level l as463

‖K(Tτ , Sν2)− Uτ,ν2U>τ,ν2K(Tτ , Sν2)‖2F464

6
∥∥K(Tτ1 , Sν2)− Uτ1,νU>τ1,νK(Tτ1 , Sν2)

∥∥2
F

465

+
∥∥K(Tτ2 , Sν2)− Uτ2,νU>τ2,νK(Tτ2 , Sν2)

∥∥2
F

+ ε20‖K(Tτ , Sν2)‖2F .466
467

Assembling the above three inequalities and using Sν = Sν1 ∪ Sν2 , we obtain468

‖K(Tτ , Sν1)− Uτ,ν1U>τ,ν1K(Tτ , Sν1)‖2F + ‖K(Tτ , Sν2)− Uτ,ν2U>τ,ν2K(Tτ , Sν2)‖2F469

6
∥∥K(Tτ1 , Sν)− Uτ1,νU>τ1,νK(Tτ1 , Sν)

∥∥2
F

+
∥∥K(Tτ2 , Sν)− Uτ2,νU>τ2,νK(Tτ2 , Sν)

∥∥2
F

470

+ ε0
(
‖K(Tτ , Sν1)‖2F + ‖K(Tτ , Sν2)‖2F

)
.471472

The left hand side of the inequality is the approximation error of the two blocks at473

level l while the first two terms on the right hand side are the approximation errors of474

two blocks at level (l + 1). Summing over all the nodes τ at level l of TT and all the475

node pairs (ν1, ν2) at level (L− l) of TS on both sides of this inequality, we obtain,476 ∑
τ,ν at level l

‖K(Tτ , Sν)− Uτ,νU>τ,νK(Tτ , Sν)‖2F477

6
∑

τ,ν at level (l+1)

‖K(Tτ , Sν)− Uτ,νU>τ,νK(Tτ , Sν)‖2F + ε20‖K(T, S)‖2F478

6 (L− (l + 1) + 1)ε20‖K(T, S)‖2F + ε20‖K(T, S)‖2F = (L− l + 1)ε20‖K(T, S)‖2F .479480

5.2. Approximation error for the nested basis Vτ,ν . The overall approx-481

imation error for the projection to the row bases is bounded just like that of the482

column bases shown in Theorem 5.2.483

Theorem 5.2. Given a level l in the range L > l > lc, the low-rank approxima-484

tions of all the blocks K(Tτ , Sν) at level l (τ at level l of TT and ν at level (L− l) of485

TS) based on the computed row basis matrices Vτ,ν have approximation errors bounded486

as487

(5.3)
∑

τ,ν at level l

‖K(Tτ , Sν)−K(Tτ , Sν)Vτ,νV
>
τ,ν‖2F 6 (l + 1)ε20‖K(T, S)‖2F ,488

where the summation of τ is over the nodes at level l of TT and the summation of ν489

is over the nodes at level (L− l) of TS.490

Proof. The proof is similar to that of Theorem 5.1.491

5.3. Approximation error for the overall factorization. Combining the492

above two error analyses for the column- and row-wise butterfly factorizations, the493

overall approximation error of a hybrid butterfly factorization at any level l can be494

bounded as shown in Theorem 5.3495

Theorem 5.3. Given center level lc = bL/2c, the low-rank approximations of all496

the blocks K(Tτ , Sν) at level lc (τ at level lc of TT and ν at level (L− lc) of TS) based497

on the computed basis matrices Uτ,ν and Vτ,ν have an overall approximation error498

bounded by499

(5.4)
∑

τ,ν at level l

‖K(Tτ , Sν)−Uτ,νU>τ,νK(Tτ , Sν)Vτ,νV
>
τ,ν‖2F 6 (L+ 2)ε20‖K(T, S)‖2F ,500

15

This manuscript is for review purposes only.

where the summation of τ is over the nodes at level lc of TT and the summation of ν501

is over the nodes at level (L− lc) of TS.502

Proof. Every block K(Tτ , Sν) has its approximation error bounded as503

‖K(Tτ , Sν)− Uτ,νU>τ,νK(Tτ , Sν)Vτ,νV
>
τ,ν‖2F504

6 ‖K(Tτ , Sν)− Uτ,νU>τ,νK(Tτ , Sν)‖2F505

+ ‖Uτ,νU>τ,νK(Tτ , Sν)− Uτ,νU>τ,νK(Tτ , Sν)Vτ,νV
>
τ,ν‖2F506

6 ‖K(Tτ , Sν)− Uτ,νU>τ,νK(Tτ , Sν)‖2F + ‖K(Tτ , Sν)−K(Tτ , Sν)Vτ,νV
>
τ,ν‖2F .507508

Using (5.1) and (5.3) in the above equation, inequality (5.4) is proven.509

The above error analysis can be further combined with the probability of ε0 ∼ O(ε)510

in the randomized Algorithm 4.1 to derive a rigorous probability bound. Suppose511

Algorithm 2.1 can attain a relative error O(ε) with probability ρ, one can show that512

Algorithm 4.1 can attain the relative error in Theorem 5.3 (replacing ε0 with O(ε))513

with probability at least ρ2
L(L+2). Though we will not derive a tighter probability514

bound in this paper, the numerical results in section 7 provide clear evidence for the515

accuracy of the randomized butterfly factorization algorithm.516

Lastly, we note that the above error analysis also applies to other deterministic517

projection (i.e., SVD and QR)-based butterfly factorization algorithm. The only518

assumption we made in Theorem 5.3 is that the low-rank approximation of all the519

blocks explicitly compressed in the construction of a butterfly factorization has the520

actual relative error bounded by ε0.521

6. Parallelization. This section outlines a distributed-memory implementation522

of Algorithm 4.1. We first consider the task of parallelizing a butterfly-vector mul-523

tiplication assuming that the butterfly factors are stored in a distributed fashion.524

Note that this is the dominant computational task in the proposed algorithm as the525

black-box multiplications on lines 4, 23, 13, 33 often involve existing butterfly repre-526

sentations, and the explicit multiplications on lines 34, 26, 37 involve partial butterfly527

factors. A good parallelization strategy for these two types of multiplications there-528

fore is paramount to the parallel implementation of the proposed randomized butterfly529

reconstruction scheme.530

Without loss of generality, we assume that rτ,ν = r for some constant r, the531

number of butterfly levels L is even, n = r2L, and the number of processes 1 ≤532

p ≤ 2L is a power of two. To estimate the algorithm’s communication cost, we only533

analyze the number of messages and communication volume as we assume the time534

to communicate a message of size m between two processes is α+ βm where α and β535

represent message latency and inverse bandwidth, respectively [11].536

6.1. Column/Row-wise factorization. We first describe the parallelization537

scheme for the column-wise butterfly factorization studied in [29]. The parallel data538

layout can be descried as follows: (i) starting from level L of TT , one process stores539

2L/p consecutive blocks Uτ,s following a 1D-row layout. (ii) At levels l = L−1, . . . , 1,540

let {τ1, τ2} be the children of τ at level l of TT and {ν1, ν2} be the children of ν at541

level L− l − 1 of TS . Consider the combined transfer matrix:542

Rτ,ν =

[
Rτ1,ν

Rτ2,ν

] [
Rτ,ν1 Rτ,ν1

]
(6.1)543

544

where Rτa,ν can be replaced by Uτa,ν if l = L− 1. The parallelization scheme stores545

Rτa,ν (or Uτa,ν if l = L − 1) and Rτ,νa on the same process. (iii) At level l = 0, the546

16

This manuscript is for review purposes only.

blocks Et,ν and Rt,ν are stored on the same process. Figure 6.1(a) illustrates the data547

layout for a 4-level column-wise butterfly factorization using 4 processes. Note that548

at level l = 0, the layout of Et,ν is similar to the 1D-row layout for Uτ,s, but in an549

index-reversed order.550

When multiplying a (partial) butterfly stored as described above by a vector551

stored using the 1D-row layout, an all-to-all communication is required to convert the552

vector from the 1D-row layout to the index-reversed layout of Et,ν . To this end, each553

process communicates min{2L/p, p−1} messages of total size r2L/p. For the example554

in Figure 6.1(a), process 0 (light green) needs to scatter the locally stored part of Ω555

of size 2L/p × r to all other processes before the multiplication operation with E0556

can take place. After that, there are log p levels requiring pair-wise exchanges of the557

intermediate multiplication results Rl . . . R0E0Ω (e.g., after multiplication with R0558

and R1 in Figure 6.1(a)). For each exchange operation, reductions involving messages559

of size r2L/p between two processes are performed (note: broadcast is conducted for560

multiplying the transpose K(T, S)>). For example, considering the multiplication561

with Rτ,ν1 (stored on process 0 in light green) and Rτ,ν2 (stored on process 2 in dark562

green) in the first diagonal block of R0, the local multiplication results of size 2r × r563

require a reduction between processes 0 and 2 before the local multiplication with564

the first diagonal block of R1 is performed. The communication costs are listed in565

Table 6.1.566

The parallelization of the row-wise butterfly factorization can be described simi-567

larly: At level l = 0 of T0, Vt,ν is stored using the 1D-row layout; at levels l = 1, . . . , L,568

Wτ,νa (or Vτ,νa if l = 1) and Wτa,ν are stored on the same process. The communica-569

tion costs for the row-wise parallelization are the same as those for the column-wise570

parallelization.571

6.2. Hybrid factorization. Since Algorithm 4.1 computes a hybrid factoriza-572

tion, it is more convenient and efficient to combine the column-wise and row-wise573

parallel data layouts. Specifically, the factors ULRL−1RL−2 . . . Rlc are stored using574

the column-wise layout whereas those of W lcW lc−1 . . .W 1V 0 adhere to the row-wise575

layout. The block Bτ,ν is handled by the same process as Wτ,ν in W lc . When multi-576

plying the (partial) butterfly with a vector Ω, all-to-all communication is needed for577

the intermediate result BlcW lcW lc−1 . . .W 1V 0Ω. In contrast to the column/row-wise578

layout, the number of levels requiring pair-wise exchange is only max{0, log p2/2L}.579

Note that no exchange is needed if p ≤ 2L/2. As an example, Figure 6.1(b) shows the580

multiplication of a 4-level hybrid butterfly using 4 processes. Here, p = 2L/2 and the581

only communication is the all-to-all operation that occurs after multiplying with B2582

to switch from the row- to the column-wise layout. Table 6.1 lists the communication583

costs for the hybrid data layout. Clearly, the multiplication using the hybrid fac-584

torization requires less communication than multiplication with the column/row-wise585

factorization.586

Now we can summarize the proposed parallelization strategy for Algorithm 4.1587

as follows:588

• The black-box multiplications on lines 4, 23, 13, 33 follow the hybrid layout589

if they involve existing parallel butterfly representations.590

• The computed butterfly factors follow the hybrid layout for each process that591

applies Algorithm 2.1 on lines 26 and 37 locally for the blocks it is in charge592

of.593

• The explicit multiplications with computed butterfly blocks on lines 34, 26,594

37 follow the hybrid layout but may not involve all the processes.595

17

This manuscript is for review purposes only.

(a)

(b)

4
U

3
R

2
R

1
R

0
R

0
E

4
U

3
R

2
R

2
W

1
W

0
V

2
B

exchange exchange

all-to-all

all-to-all

Ω

Ω

Fig. 6.1. Parallel data layout for distributing a 4-level (a) column-wise and (b) hybrid factoriza-
tion with 4 processes. Each color represents one process. The arrows denote places where exchange
and all-to-all communications are needed for multiplying the butterfly with a 1D row distributed
vector. Note that no exchange is needed for the hybrid butterfly.

exchange all-to-all
volume message count volume message count

column/row r2L log p
p log p r2L

p min{ 2
L

p , p− 1}
hybrid r2L

p max{0, log p2

2L
} max{0, log p2

2L
} r2L

p min{ 2
L

p , p− 1}
Table 6.1

Communication volume and message counts for one matrix-vector multiplication.

7. Numerical results. This section provides several examples to demonstrate596

the accuracy and efficiency of the proposed randomized algorithm. The accuracy of597

the proposed algorithms is characterized by598

error =

∥∥AΩ−
(
ULRL−1RL−2 . . . Rl

)
Bl
(
W lW l−1 . . .W 1V 0

)
Ω
∥∥
F

‖AΩ‖F
(7.1)599

600

with a random testing matrix Ω of 16 columns. All experiments are performed on601

the Cori Haswell machine at NERSC, which is a Cray XC40 system and consists of602

2388 dual-socket nodes with Intel Xeon E5-2698v3 processors running 16 cores per603

socket. The nodes are configured with 128 GB of DDR4 memory clocked at 2133604

MHz. Unless stated otherwise, all experiments use one Cori node.605

7.1. Exact butterfly factorization. We first apply the algorithm to “recover”606

a matrix with known butterfly factorization. In what follows, we use the symbol607

“ā” to differentiate the blocks and factors of the known butterfly from the computed608

ones. Let A be a n × n matrix with a given L-level butterfly factorization A =609

(ŪLR̄L−1R̄L−2 . . . R̄l)B̄l(W̄ lW̄ l−1 . . . W̄ 1V̄ 0) that has rτ,ν = r for all blocks at all610

levels for some constant r. The blocks W̄τ,ν , R̄τ,ν , and B̄τ,ν have dimensions r × 2r,611

2r × r and r × r, respectively. We choose the matrix dimension n = 2L+3 such that612

Ūτ,s and V̄t,ν have dimensions 8× r. The blocks Ūτ,s, V̄t,ν , W̄τ,ν , R̄τ,ν are constructed613

as random unitary matrices, and the entries of B̄τ,ν are random variables which are614

independent and identically distributed, following a normal distribution. We use615

this explicit representation to perform “black-box” matrix-vector multiplications and616

apply Algorithm 4.1 to retrieve the butterfly factorization.617

18

This manuscript is for review purposes only.

The memory costs for varying n with fixed r = 8 when using the proposed algo-618

rithm and the randomized SVD-based reference algorithm in [14] are plotted in Figure619

7.1(a). We set p = 2 and r0 = 4 in Algorithm 4.1. The proposed algorithm requires620

only O(nlogn) memory as opposed to the reference algorithm, which requires O(n1.5)621

memory.622

Next, the performance of the proposed parallelization scheme is demonstrated623

by applying Algorithm 4.1 to the butterfly representation with n = 2.56× 106 and624

r = 10. Figure 7.1(b) plots the runtimes of Algorithm 4.1 and a single matvec with625

the exact butterfly in both hybrid and column-wise data layouts, for process counts626

ranging from 16 to 2048. As predicted by Table 6.1, the hybrid data layout yields a627

substantially lower communication cost in both matvec and factorization. As a result,628

we obtain up to 4x speedups for a single matvec comparing the hybrid layout to the629

column-wise layout; also, the runtime of Algorithm 4.1 is 25% faster.

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

M
em

o
ry

 (
M

B
)

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

M
em

o
ry

 (
M

B
)

Reference

Proposed

n

1.5()O n

(log)O n n

16 32 64 128 256 512 1024 2048 4096
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

16 32 64 128 256 512 1024 2048 4096
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Fig. 7.1. (a) Memory for applying Algorithm 4.1 and the reference algorithms to an exact
butterfly representation. (b) Runtime for applying Algorithm 4.1 and matrix-vector multiplications
to the exact butterfly representation with hybrid and column-wise patterns for varying core counts.

630

7.2. 2D Helmholtz kernel. Next, consider the following wave scattering ex-631

ample. Let C1 and C2 denote two disjoint curves. Suppose C1 and C2 are partitioned632

into n and m constant-sized segments C1
i and C2

j , i = 1, ..., n, j = 1, ...,m. Let k0633

denote the wavenumber, then m,n = O(k0). Consider the following m× n matrix A634

(7.2) A = Z21(Z11)−1635

636

(7.3) Z11
i,j =

∫
C1
j

H
(2)
0 (k0|ρ1i − ρ|)dρ, i, j = 1, ..., n637

638

(7.4) Z21
i,j =

∫
C1
j

H
(2)
0 (k0|ρ2i − ρ|)dρ, i = 1, ...,m, j = 1, ..., n639

Here, H2
0 (·) is the zeroth-order Hankel function of the second kind, ρ is a position640

vector on C1, ρ1i and ρ2i denote the center of segment C1
i and C2

i . In principle,641

the n × n matrix (Z11)−1 relates the equivalent source on C1 to the incident fields642

on C1, and the m × n matrix Z21 computes fields observed on C2 scattered by the643

source on C1. The matrix A in (7.2) resembles the scattering matrix as it relates the644

incident fields on C1 to its scattered fields on C2 [10, 20]. In what follows, we seek a645

butterfly-compressed representation of the matrix A.646

19

This manuscript is for review purposes only.

n L ε r error Time (sec) Memory (MB)

20000 9 3E-04 10 3.63E-04 3.61E+01 1.68E+01
80000 11 3E-04 10 4.22E-04 3.27E+02 7.71E+01
320000 13 3E-04 10 4.98E-04 3.27E+03 3.47E+02
1280000 15 3E-04 10 7.38E-04 3.02E+04 1.58E+03

20000 9 3E-05 12 2.45E-05 7.80E+01 3.13E+01
80000 11 3E-05 12 2.39E-05 7.21E+02 1.32E+02
320000 13 3E-05 12 2.37E-05 6.46E+03 5.99E+02
1280000 15 3E-05 12 3.26E-05 5.87E+04 2.64E+03

20000 9 3E-06 14 8.09E-06 8.10E+01 3.71E+01
80000 11 3E-06 14 8.39E-06 7.82E+02 1.71E+02
320000 13 3E-06 14 9.11E-06 7.17E+03 7.92E+02
1280000 15 3E-06 14 9.57E-06 6.17E+04 3.56E+03

Table 7.1
Time, memory and measured error for computing a hybrid factorization of (7.2) using the

proposed algorithm with varying matrix size n and tolerance ε.

In this example, suppose C1 and C2 are two parallel lines with length D and647

their respective distance D, where D is set to 1 m. It is well known that, for elon-648

gated structures [22, 26], Z11 and its inverse have compressed representations using649

H-matrix or other low-rank factorization-based hierarchical techniques, requiring at650

most O(nlogn) computation and memory resources [3,6,23]. In addition, Z21 can be651

compressed by the butterfly factorization requiring O(nlogn) computation and mem-652

ory resources [20,21]. Therefore, A and its transpose can be applied to any vector in653

O(nlogn) operations irrespective of wavenumber k0.654

To compute a butterfly-compressed representation of A using the proposed algo-655

rithm, the lengths of line segments C1
i and C2

i are set to approximately 0.05λ with656

λ = 2π/k0 denoting the wavelength. The sizes of the leaf-level point sets Tτ and Sν657

are set to approximately 39. The matrices (Z11)−1 and Z21 are compressed respec-658

tively with the H-matrix and butterfly factorization with a high accuracy (tolerance659

ε = 10−8), respectively. Note that these compressed representations are used instead660

of A in (7.1) and in black-box multiplications.661

10
4

10
5

10
6

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
4

10
5

10
6

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

M
em

o
ry

 (
M

B
)

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

M
em

o
ry

 (
M

B
)

Reference

Proposed

1.5()O n

(log)O n n

n

Fig. 7.2. (a) Factorization and one black-box matvec times and (b) memory for applying
Algorithm 4.1 and the reference algorithms to (7.2).

The computational results with butterfly level L = 9, 11, 13, 15 and λ = 9.76× 10−5m,662

2.44× 10−5m, 6.10× 10−6m, 1.52× 10−6m for different tolerances ε = 3× 10−4, 3× 10−5, 3× 10−6663

20

This manuscript is for review purposes only.

are listed in Table 7.1. We set p = 2 and r0 = 4 in Algorithm 4.1. The measured664

error scales proportional to L as predicted in Theorem 5.3. For ε = 10−3, the compu-665

tationally most expensive case (when n = 1.28× 106) requires about 9 h CPU time666

and 1.6 GB memory. Moreover, the memory cost and the factorization time obey the667

predicted O(nlogn) and O(n1.5logn) scaling estimates.668

The computation time and memory cost with L = 8, ..., 15 and ε = 10−3 are669

plotted in Figure 7.2 using the proposed algorithm and the reference algorithm in670

[14]. The proposed algorithm is slightly slower than the reference algorithm as it671

requires slightly more testing vectors to reduce the memory cost. That said, the672

proposed algorithm requires much less memory than the reference algorithm (see673

Figure 7.2(b)).674

7.3. 3D Helmholtz kernel. Finally, we consider the wave interactions between675

two semi-sphere surfaces C1 and C2 of unit radius adjacent to each other. Each semi-676

sphere is discretized via the Nyström method into n sample points. We seek a butterfly677

factorization of the following n× n matrix A:678

Ai,j =
exp(i2πκ|ρi − ρj |)

|ρi − ρj |
(7.5)679

680

with ρi and ρj denoting sample point i and j on C1 and C2, respectively. The681

wavenumber κ is set such that n = 50κ2/π represents approximately 10 sample points682

per wavelength. We first compute A ≈ (ŪLR̄L−1R̄L−2 . . . R̄l)B̄l(W̄ lW̄ l−1 . . . W̄ 1V̄ 0)683

with ε = 10−11 and use the result for (7.1) and the black-box multiplications.684

The computational results with butterfly level L = 8, 10, 12 for different tolerances685

ε = 3× 10−5, 3× 10−7, 3× 10−9, 3× 10−11 are listed in Table 8.1. We set p = 4 and686

r0 = 64 in Algorithm 4.1. These experiments use 2 Cori nodes with a total of 64687

MPI processes. The proposed algorithm achieves the desired accuracies predicted688

by Theorem 5.3. The computation time, memory and observed rank with ε = 10−2689

are plotted in Figure 8.1 using the proposed algorithm. Despite the O(n0.25) rank690

scaling (see Figure 4.1(b) as an illustration), Algorithm 4.1 still attains O(n1.5logn)691

computation and O(nlogn) memory complexities as estimated in subsection 4.5.2. In692

addition, the estimated memory usage with the reference algorithm is also plotted in693

Figure 8.1(b), the proposed algorithm requires much less memory in comparison.694

7.4. Composition of two Fourier integral operators. Finally, consider the695

following n×nmatrix which represents discretization of the composition of two Fourier696

integral operators:697

(7.6) A = F 1KF 2
698

where699

F 1
i,j = exp(xiξj + ξj sin(2πxi)/8)(7.7)700

F 2
i,j = exp(xiξj + x2i ξj/16)(7.8)701

represent the two discretized Fourier integral operators with xi = (i−1)/n, ξj = j−1,702

i, j ≤ n, and Ki,j = exp(2π(i− 1)(j − 1)/n) is the discretized Fourier transform. We703

first compress F 1, K, F 2 as three butterflies with ε = 10−6 and then use the product704

of three butterflies for (7.1) and the black-box multiplications.705

The computational results with butterfly level L = 10, 12, 14 for different tol-706

erances ε = 3× 10−3, 3× 10−5, 3× 10−6 are listed in Table 8.2. We set p = 4 and707

21

This manuscript is for review purposes only.

r0 = 32 in Algorithm 4.1. It’s worth noting that although F 1, K and F 2 permit708

butterfly ranks independent of n and L, their product A exhibits increasing butterfly709

ranks.710

The computation time and memory cost with L = 10, 11, 12, 13, 14 and ε =711

3× 10−5 are plotted in Figure 8.2 using the proposed algorithm. Despite the rank712

increase, the proposed algorithms can achieve O(n1.5logn) computation and O(nlogn)713

memory complexities as estimated in subsection 4.5.2.714

8. Conclusion and discussion. This paper presented a fast and memory-715

efficient randomized algorithm for computing the butterfly factorization of a matrix716

assuming the availability of a black-box algorithm for applying the matrix and its717

transpose to a vector. The proposed algorithm applies the matrix and its trans-718

pose to structured random vectors to reconstruct the orthonormal row and column719

bases of judiciously-selected low-rank blocks of the (assumed) butterfly-compressible720

matrix. The algorithm only requires O(n1.5 log n) computation and O(n log n) stor-721

age resources for matrices arising from the integral equation based discretization of722

both 2D and 3D Helmholtz problems using either weak or strong admissibility sep-723

aration criteria. The accuracy of the proposed algorithm only weakly depends on724

the number of butterfly levels. The computation time of the algorithm can be re-725

duced leveraging distributed-memory parallelism. We expect that the proposed al-726

gorithm will play an important role in constructing both dense and sparse, fast and727

parallel, hierarchical matrix-based direct solvers for high-frequency wave equations.728

The code described here is part of the Fortran/C++ solver package ButterflyPACK729

(https://github.com/liuyangzhuan/ButterflyPACK), freely available online. The in-730

tegration of butterfly factorizations into the sparse solver package STRUMPACK is731

currently in progress.732

Acknowledgments. This research was supported in part by the Exascale Com-733

puting Project (17-SC-20-SC), a collaborative effort of the U.S. Department of En-734

ergy Office of Science and the National Nuclear Security Administration, and in part735

by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific736

Computing Research, Scientific Discovery through Advanced Computing (SciDAC)737

program through the FASTMath Institute under Contract No. DE-AC02-05CH11231738

at Lawrence Berkeley National Laboratory.739

This research used resources of the National Energy Research Scientific Comput-740

ing Center (NERSC), a U.S. Department of Energy Office of Science User Facility741

operated under Contract No. DE-AC02-05CH11231.742

10
4

10
5

10
6

10
-5

10
-3

10
-1

10
1

10
3

50

100

150

200

250

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

Fig. 8.1. (a) Times for factorization and one black-box matvec (left y-axis), observed rank
(right y-axis) and (b) memory for applying Algorithm 4.1 and the reference algorithms to (7.5).

22

This manuscript is for review purposes only.

https://github.com/liuyangzhuan/ButterflyPACK

n L ε r error Time (sec) Memory (MB)

23806 8 3E-05 181 1.14E-04 3.36E+00 1.37E+02
94024 10 3E-05 252 1.29E-04 2.14E+01 5.62E+02
379065 12 3E-05 354 1.52E-04 1.71E+02 2.37E+03

23806 8 3E-07 271 1.09E-06 7.40E+00 3.37E+02
94024 10 3E-07 371 1.22E-06 4.94E+01 1.41E+03
379065 12 3E-07 522 1.31E-06 3.93E+02 5.94E+03

23806 8 3E-09 362 1.05E-08 1.50E+01 6.72E+02
94024 10 3E-09 499 1.11E-08 1.01E+02 2.85E+03
379065 12 3E-09 705 1.25E-08 7.98E+02 1.22E+04

23806 8 3E-11 474 8.46E-11 2.70E+01 1.25E+03
94024 10 3E-11 634 1.69E-10 1.94E+02 5.35E+03
379065 12 3E-11 852 8.74E-11 1.69E+03 2.30E+04

Table 8.1
Time, memory and measured error for computing a hybrid factorization of (7.5) using the

proposed algorithm with varying matrix size n and tolerance ε.

n L ε r error Time (sec) Memory (MB)

4000 10 3E-03 26 1.79E-02 6.37E+00 2.24E+01
16000 12 3E-03 43 2.67E-02 6.99E+01 1.13E+02
64000 14 3E-03 89 3.86E-02 9.06E+02 5.82E+02

4000 10 3E-05 31 1.83E-04 1.00E+01 4.02E+01
16000 12 3E-05 54 4.75E-04 1.12E+02 2.04E+02
64000 14 3E-05 115 1.33E-03 1.52E+03 1.01E+03

4000 10 3E-06 29 1.64E-05 1.21E+01 4.72E+01
16000 12 3E-06 61 3.80E-05 1.37E+02 2.50E+02
64000 14 3E-06 123 8.34E-05 1.85E+03 1.29E+03

Table 8.2
Time, memory and measured error for computing a hybrid factorization of (7.6) using the

proposed algorithm with varying matrix size n and tolerance ε.

4000 8000 16000 32000 64000
10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

4000 8000 16000 32000 64000
10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

4000 8000 16000 32000 64000

10
2

10
3

10
4

4000 8000 16000 32000 64000

10
2

10
3

10
4

Fig. 8.2. (a) Times for factorization and one black-box matvec and (b) memory for applying
Algorithm 4.1 and the reference algorithms to (7.6).

REFERENCES743

[1] J. Bremer, Z. Chen, and H. Yang, Rapid application of the spherical harmonic transform744

23

This manuscript is for review purposes only.

via interpolative decomposition butterfly factorization, 2020, https://arxiv.org/abs/2004.745
11346.746

[2] E. Candès, L. Demanet, and L. Ying, A fast butterfly algorithm for the computation of747
Fourier integral operators, Multiscale Modeling & Simulation, 7 (2009), pp. 1727–1750.748

[3] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, A fast solver for hss749
representations via sparse matrices, SIAM Journal on Matrix Analysis and Applications,750
29 (2007), pp. 67–81.751

[4] B. Engquist and H. Zhao, Approximate separability of the green’s function of the helmholtz752
equation in the high frequency limit, Communications on Pure and Applied Mathematics,753
71 (2018), pp. 2220–2274, https://doi.org/10.1002/cpa.21755.754

[5] C. Gorman, G. Chávez, P. Ghysels, T. Mary, F.-H. Rouet, and X. S. Li, Robust and755
accurate stopping criteria for adaptive randomized sampling in matrix-free hierarchically756
semiseparable construction, SIAM Journal on Scientific Computing, 41 (2019), pp. S61–757
S85.758

[6] L. Grasedyck and W. Hackbusch, Construction and arithmetics of H-matrices, Computing,759
70 (2003), pp. 295–334.760

[7] H. Guo, J. Hu, and E. Michielssen, On MLMDA/butterfly compressibility of inverse integral761
operators, IEEE Antennas and Wireless Propagation Letters, 12 (2013), pp. 31–34.762

[8] H. Guo, Y. Liu, J. Hu, and E. Michielssen, A butterfly-based direct integral-equation solver763
using hierarchical LU factorization for analyzing scattering from electrically large conduct-764
ing objects, IEEE Transactions on Antennas and Propagation, 65 (2017), pp. 4742–4750.765

[9] N. Halko, P. Martinsson, and J. Tropp, Finding structure with randomness: probabilistic766
algorithms for constructing approximate matrix decompositions, SIAM Review, 53 (2011),767
pp. 217–288.768

[10] S. Hao, P. Martinsson, and P. Young, An efficient and highly accurate solver for multi-769
body acoustic scattering problems involving rotationally symmetric scatterers, Computers770
& Mathematics with Applications, 69 (2015), pp. 304 – 318.771

[11] R. W. Hockney, The communication challenge for MPP: Intel Paragon and Meiko CS-2,772
Parallel Comput., 20 (1994), p. 389–398.773

[12] L. Hörmander, Fourier integral operators. i, Acta Math., 127 (1971), pp. 79–183.774
[13] Y. Li and H. Yang, Interpolative butterfly factorization, SIAM Journal on Scientific Comput-775

ing, 39 (2017), pp. A503–A531.776
[14] Y. Li, H. Yang, E. R. Martin, K. L. Ho, and L. Ying, Butterfly factorization, Multiscale777

Modeling & Simulation, 13 (2015), pp. 714–732.778
[15] Y. Li, H. Yang, and L. Ying, A multiscale butterfly algorithm for multidimensional Fourier779

integral operators, Multiscale Modeling & Simulation, 13 (2015), pp. 614–631.780
[16] Y. Li, H. Yang, and L. Ying, Multidimensional butterfly factorization, Applied and Compu-781

tational Harmonic Analysis, (2017).782
[17] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert, Randomized algo-783

rithms for the low-rank approximation of matrices, Proceedings of the National Academy784
of Sciences, 104 (2007), pp. 20167–20172.785

[18] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix representation from786
matrix–vector multiplication, Journal of Computational Physics, 230 (2011), pp. 4071 –787
4087, https://doi.org/https://doi.org/10.1016/j.jcp.2011.02.033.788

[19] Y. Liu, P. Ghysels, L. Claus, and X. S. Li, Sparse approximate multifrontal factorization789
with butterfly compression for high frequency wave equations, 2020, https://arxiv.org/abs/790
2007.00202.791

[20] Y. Liu, H. Guo, and E. Michielssen, An HSS matrix-inspired butterfly-based direct solver for792
analyzing scattering from two-dimensional objects, IEEE Antennas and Wireless Propaga-793
tion Letters, 16 (2017), pp. 1179–1183.794

[21] Y. Liu and H. Yang, A hierarchical butterfly LU preconditioner for two-dimensional electro-795
magnetic scattering problems involving open surfaces, Journal of Computational Physics,796
401 (2020), p. 109014.797

[22] P. Martinsson and V. Rokhlin, A fast direct solver for scattering problems involving elon-798
gated structures, Journal of Computational Physics, 221 (2007), pp. 288 – 302, https:799
//doi.org/https://doi.org/10.1016/j.jcp.2006.06.037.800

[23] P. G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in801
two dimensions, Journal of Computational Physics, 205 (2005), pp. 1–23.802

[24] E. Michielssen and A. Boag, Multilevel evaluation of electromagnetic fields for the rapid solu-803
tion of scattering problems, Microwave and Optical Technology Letters, 7 (1994), pp. 790–804
795.805

[25] E. Michielssen and A. Boag, A multilevel matrix decomposition algorithm for analyzing806

24

This manuscript is for review purposes only.

https://arxiv.org/abs/2004.11346
https://arxiv.org/abs/2004.11346
https://arxiv.org/abs/2004.11346
https://doi.org/10.1002/cpa.21755
https://doi.org/https://doi.org/10.1016/j.jcp.2011.02.033
https://arxiv.org/abs/2007.00202
https://arxiv.org/abs/2007.00202
https://arxiv.org/abs/2007.00202
https://doi.org/https://doi.org/10.1016/j.jcp.2006.06.037
https://doi.org/https://doi.org/10.1016/j.jcp.2006.06.037
https://doi.org/https://doi.org/10.1016/j.jcp.2006.06.037

scattering from large structures, IEEE Transactions on Antennas and Propagation, 44807
(1996), pp. 1086–1093.808

[26] E. Michielssen, A. Boag, and W. C. Chew, Scattering from elongated objects: direct solution809
in O(Nlog2N) operations, IEE Proceedings - Microwaves, Antennas and Propagation, 143810
(1996), pp. 277–283.811

[27] M. O’Neil, F. Woolfe, and V. Rokhlin, An algorithm for the rapid evaluation of special812
function transforms, Applied and Computational Harmonic Analysis, 28 (2010), pp. 203 –813
226. Special Issue on Continuous Wavelet Transform in Memory of Jean Morlet, Part I.814

[28] Q. Pang, K. L. Ho, and H. Yang, Interpolative decomposition butterfly factorization, SIAM815
Journal on Scientific Computing, 42 (2020), pp. A1097–A1115, https://doi.org/10.1137/816
19M1294873.817

[29] J. Poulson, L. Demanet, N. Maxwell, and L. Ying, A parallel butterfly algorithm, SIAM818
Journal on Scientific Computing, 36 (2014), pp. C49–C65.819

[30] J. M. Tamayo, A. Heldring, and J. M. Rius, Multilevel adaptive cross approximation820
(MLACA), IEEE Transactions on Antennas and Propagation, 59 (2011), pp. 4600–4608.821

[31] M. Tygert, Fast algorithms for spherical harmonic expansions, III, Journal of Computational822
Physics, 229 (2010), pp. 6181 – 6192.823

[32] H. Yang, A unified framework for oscillatory integral transforms: When to use NUFFT or824
butterfly factorization?, Journal of Computational Physics, 388 (2019), pp. 103 – 122.825

[33] L. Ying, Sparse Fourier transform via butterfly algorithm, SIAM Journal on Scientific Com-826
puting, 31 (2009), pp. 1678–1694.827

25

This manuscript is for review purposes only.

https://doi.org/10.1137/19M1294873
https://doi.org/10.1137/19M1294873
https://doi.org/10.1137/19M1294873

	Introduction
	Preliminary background
	Notation
	Low-rank approximation by projection

	Butterfly factorization
	Hierarchical partitioning
	Complementary low-rank property
	Low-rank approximation of blocks
	Column-wise butterfly factorization
	Row-wise butterfly factorization
	Hybrid butterfly factorization

	Adaptive butterfly factorization via randomized matrix-vector products
	Multiplication of K(T, S) and K(T, S) by random matrices
	Computation of U, and R,
	Computation of V, and W,
	Computation of B, at level lc
	Cost Analysis
	r is constant
	r is O(n1/4)

	Error analysis
	Approximation error for the nested basis U,
	Approximation error for the nested basis V,
	Approximation error for the overall factorization

	Parallelization
	Column/Row-wise factorization
	Hybrid factorization

	Numerical results
	Exact butterfly factorization
	2D Helmholtz kernel
	3D Helmholtz kernel
	Composition of two Fourier integral operators

	Conclusion and discussion
	References

