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Abstract
High energy colliders provide a critical tool in nuclear

physics study by probing the fundamental structure and dy-
namics of matter. Optimizing the collider’s machine param-
eters is both computationally and experimentally expensive.
A fast and robust optimization framework that includes both
beam-beam and the detailed machine lattice will be cru-
cial to attaining the best performance of the collider. In
this paper, we report on the development of an integrated
framework that includes an advanced Bayesian optimization
software GPTune, a self-consistent beam-beam simulation
code BeamBeam3D, and the detailed lattice model from
MAD-X. Application results to the RHIC facility optimiza-
tion are also presented.

INTRODUCTION
The high energy collider, Relativistic Heavy Ion Collider

(RHIC) is a critical device in the study of quak-gluon plasma
in nuclear physics. To maximize the potential of scientific
discovery, it is important to optimize the parameters of the
collider to attain higher luminosity. Increasing luminosity
has many limiting factors from the beam dynamics point
of view. Among them, the beam-beam effect, the electro-
magnetic interactions from the opposing beams, has been
a strong limitation for most colliders, due to its nonlinear
nature. Depending on the distinctive feature of the detector,
the total luminosity may not be the only parameter indicating
the performance of the collider. As prioritized in the 2015
NSAC Long Range Plan (LRP) [1], a state-of-art jet detector,
named ‘sPHENIX’ [2], was commissioned at IR8 of RHIC,
and started taking physics data in 2023. The acceptance of
sPHENIX demands the collision point located at a longitudi-
nal window |𝑠 | < 0.1m from the interaction point (IP), which
imposes additional challenges in tuning and optimizing the
performance of RHIC. In this paper, we report on progress
of developing an integrated computational framework and
application of this framework to RHIC optimization. A
schematic plot of this framework is shown in Fig. 1. It con-
sists of two optimization workflow circles: the left circle
includes the Bayesian optimization software GPTune [3],
the accelerator lattice optics program, MAD-X [4], and the
analytical and beam-beam simulation tools. The right circle
contains the RHIC collider, and the optimization software
and the lattice program. The left circle optimizes the RHIC
luminosity based on simulations. The right circle optimizes
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Figure 1: Schematic plot of the computational framework for
a nuclear physics collider (RHIC) luminosity optimization.

the RHIC luminosity based on experimental measurements.
The left circle can generate sufficient amount of data to train
parameters inside the optimizer. The trained optimizer will
then be used for the right circle direct RHIC luminosity. The
left circle provides a transfer learning for the right circle and
will improve the optimization convergence speed.

BEAM-BEAM SIMULATION TOOL
Besides the analytical model, we also used a self-

consistent simulation code, BeamBeam3D [5,6], based on
the particle-in-cell method, that was developed in our pre-
vious studies to simulate the beam-beam effect. This code
includes a self-consistent calculation of the electromagnetic
forces (beam-beam forces) from two colliding beams (i.e.
strong-strong modeling), linear and nonlinear transfer maps
for beam transport between collision points, a stochastic
map to treat radiation damping, quantum excitation, an ar-
bitrary orbit separation model, and a single map to account
for chromaticity effects. Here, the beam-beam forces are
calculated by solving the Poisson equation using an FFT-
based algorithm. The parallel implementation is done using
a particle-field decomposition method to achieve a good load
balance. It has been applied to studies of the beam-beam
effect at several colliders [7–9].

BAYESIAN OPTIMIZATION
Bayesian optimization (BO) is an attractive machine learn-

ing technique particularly well-suited for optimization for an
expensive “black-box” function with limited function evalu-
ation points. In the context of this study, the black-box func-
tion can be either a simulation code or an experiment from
an accelerator operation. Through the Bayesian approach,
we can obtain a fast machine learning surrogate model, as
well as the uncertainty of the model’s prediction. Bayesian
optimization employs the Bayes Theorem of setting a prior
over the objective function and combining it with evidence
to get a posterior function [10]. A popular surrogate model
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for Bayesian optimization is Gaussian Processes (GP), a non-
parametric stochastic model of distribution over functions.
GP takes the set of input values 𝑡, and their function values
𝐹 (𝑡) (from analytical model, simulation, or measurement)
and assumes they are sampled from a Gaussian distribution
with

𝐹 (𝑡) ∼ 𝐺𝑃(𝜇(𝑡), Σ(𝑡, 𝑡′)) (1)

in Eq. (1), where 𝜇 is the mean function and Σ is the kernel
function, also known as covariance function, that character-
izes the correlation as a function of the “similarity” between
two samples. Then GP is used in the acquisition function
to propose a new sampling point that is likely to yield im-
provement. The prediction from the acquisition function
represents an automatic trade-off between exploration and
exploitation. Popular acquisition functions include expected
improvement (EI), maximum probability of improvement
(MPI), and upper confidence bound (UCB) [11]. This opti-
mization technique performs well with limited number of
objective function evaluations. Moreover, it is likely to do
well even in settings where the objective function has multi-
ple local maxima and noise.

In this study, we employed a Bayesian optimization soft-
ware called GPTune [3]. Several useful features of GPTune
include: (1) relies on dynamic process management for run-
ning applications with varying core counts and GPUs, (2)
can incorporate coarse performance models to improve the
surrogate model, (3) allows multi-objective optimization,
(4) allows multi-fidelity tuning to better utilize the limited
resource budget, and (5) supports checkpoints and reuse of
historical performance database.

BAYESIAN OPTIMIZATION OF THE RHIC
LUMINOSITY

In this study, we first developed a fast analytical model to
calculate luminosity for optimization. Given the colliding
bunch parameters, the luminosity 𝐿 of two colliding bunches
within a longitudinal window position [-D,D] can be written
as:

𝐿 = 𝑐𝑜𝑠(𝜙) 𝑓 𝑁1𝑁2

∫ 𝐷

−𝐷

𝑑𝑠

4𝜋3/2𝜎𝑥𝜎𝑦𝜎𝑧

×

exp (−𝑠2 ( 𝑠𝑖𝑛
2 (𝜙)
𝜎2
𝑥

+ 𝑐𝑜𝑠2 (𝜙)
𝜎2
𝑧

))
(2)

in Eq. (2), where 𝜎 is the colliding beam RMS size in each
direction, 𝜙 is half crossing angle of collision, 𝑁1 and 𝑁2
are bunch intensities of each colliding bunch, and 𝑓 is the
revolution frequency. Figure 2 shows the peak luminosity,
the luminosity inside the window, and the luminosity outside
the window as a function of bunch length and a function of
crossing angle. It is seen that shorter bunch length leads to
larger luminosity inside the window and smaller luminosity
outside the window. A larger luminosity inside the window
and a smaller luminosity outside the window help maximize
signal to noise ratio in the application. From Fig. 2(bottom)
it is seen that larger crossing angle results in larger ratio

Figure 2: Peak luminosity as a function of bunch length (top)
and of crossing angle (bottom) from the analytical model.

of luminosity inside the window to luminosity outside the
window. However, this also results in smaller total peak
luminosity. In the machine operation, it is desirable to max-
imize the luminosity inside the window and minimize the
luminosity outside the window.

Figure 3 shows two-objective optimization of the luminos-
ity inside the window (-log(𝐿1)) and the luminosity outside
the window (log(𝐿0 − 𝐿1)) with respect to Twiss parameters
𝛽𝑥 , 𝛽𝑦 , bunch length 𝜎𝑧 , and the crossing angle. The non-
dominated solutions are connected with a solid line. There
exists a minimum (-log(𝐿1)) around −30, beyond which the
outside window luminosity will increase rapidly.

Figure 3: Two-objective luminosity optimization using the
analytical model and the GPT tune optimizer.

Besides the analytical model, we also developed a numer-
ical model based on BeamBeam3D to calculate the luminos-
ity. The numerical model can include linear chromaticity
and amplitude dependent tune modulation in the simulation.
It accounts for the dynamic beta effect during the collision.
Figure 4 shows the luminosity as a function of crossing angle
from the above analytical model and from the BeamBeam3D
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Figure 4: Total luminosity as function of crossing angle
from the analytical model and from the simulation (top) and
the window luminosity from the analytical model and from
the simulation (bottom).

numerical simulation. Both models agree with each other
very well in these cases.

Figure 5 shows a flow diagram of the integration of the
lattice optics program MAD-X, the beam-beam simulation
code BeamBeam3D, and the Bayesian optimization software
GPTune. Here, the predicted control parameters from the

Figure 5: Flow diagram of the integration of the optics calcu-
lation, luminosity simulation, and the Bayesian optimization
framework (GPTune).

GPTune Bayesian optimization are passed to the MAD-X
optics program to calculate corresponding parameters used
in the BeamBeam3D code. The BeamBeam3D then cal-
culates luminosity and passes it to the GPTune for further
luminosity optimization. Figure 6 shows that the negative

Figure 6: A test of the luminosity optimization using the
above workflow.

luminosity evolution during the Bayesian optimization pro-
cess (with respect to colliding location 𝑠∗𝑥 and 𝑠∗𝑦) using the

above optimization flow. A minimum value is attained after
25 iterations.

TEST OF BAYESIAN OPTIMIZATION ON
RHIC INJECTOR

In the paper, we didn’t get a chance to apply the GPTune
to RHIC luminosity optimization. As a test of real accelera-
tor optimization, we integrated the GPTune optimizer with
the RHIC injector control system, and optimized the beam
intensity from the injector [12]. Figure 7 shows a schematic
plot of the RHIC linac injector. There are 9 control param-

Figure 7: A schematic plot of the RHIC injection linac.

eters in the EBIS injection line and 10 control parameters
in the EBIS extraction line. These parameters are used in
the GPTune optimizer to maximize the beam intensity sig-
nal at two location measurements, fc96 and xf14. Here, we

Figure 8: Optimization results with different settings: Inj +
Ext, Ext only, and Original.

compared the intensity under three settings: 1) Inj + Ext:
Power supplies optimized for both injection and extraction
lines; 2) Ext: Power supplies optimized only for extraction
with original injection setting; 3) Original: Original settings
without any optimization. The optimization results for these
three different settings are shown in Fig. 8. In Fig. 8, the
red and black dots represent the measurements at fc96 and
xf14, respectively. The green and cyan numbers represent
the average beam intensities with their deviations for the
fc96 and xf14 measurements. We observed significant in-
tensity gain after optimization: 1) xf14 measurement: 42%
for extraction-only optimization and 68−71% for combined
optimization; 2) fc96 measurement: 8.4% for extraction-
only optimization and 22 − 24% for combined optimization.
Figure 8 also reveals substantial noise of the beam intensity
signal. The standard deviation is 10%, and the peak-to-peak
deviation is 15%. This optimization demonstrated GPTune’s
outstanding capability to handle noisy signals, an important
feature for many experimental settings.
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