
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 13, 2014 1671

Graphics Processing Unit Implementation of
Multilevel Plane-Wave Time-Domain Algorithm
Yang Liu, Student Member, IEEE, Abdulkadir C. Yücel, Vitaliy Lomakin, Senior Member, IEEE, and

Eric Michielssen, Fellow, IEEE

Abstract—A graphics processing unit implementation of the
multilevel plane-wave time-domain algorithm for rapidly eval-
uating transient electromagnetic fields generated by large-scale
dipole constellations is proposed. The implementation achieves
50 speedup and 60%–75% memory reduction compared to its
serial CPU implementation.

Index Terms—Graphics processing unit (GPU),multilevel plane-
wave time-domain (ML-PWTD) algorithm, NVIDIA CUDA fast
Fourier transform library (CUFFT).

I. INTRODUCTION

T HE MULTILEVEL plane-wave time-domain (ML-
PWTD) algorithm is an efficient and accurate scheme

for evaluating transient electromagnetic (EM) fields produced
by large-scale dipole constellations. It reduces the compu-
tational complexity and memory requirements of evaluating
transient EM fields from dipoles for time-steps from

and to and ,
respectively [1], [2]. When used in tandem with classical
marching-on-in-time schemes for solving time-domain integral
equations, it permits the fast and accurate analysis of scattering
from, and radiation by, complex and large-scale structures.
Despite its favorable computational complexity and memory
requirements, the computational cost of serial ML-PWTD CPU
implementations limits their applicability to the analysis of
real-world phenomena. To this end, substantial efforts have
been directed toward parallelizing the ML-PWTD algorithm
on CPU clusters [3], [4].
Recently, graphics processing units (GPUs) that perform

ultra-fast floating-point operations on multithreaded many-core
processors have been shown to favorably compete with CPUs

Manuscript received June 08, 2014; revised July 18, 2014 and August 11,
2014; accepted August 14, 2014. Date of publication August 22, 2014; date
of current version January 15, 2015. This work was supported in part by the
AFOSR/NSSEFF Program under Award FA9550-10-1-0180 and the National
Science Foundation (NSF) and the Office of Naval Research under Award
N00014-11-1-0720.
Y. Liu, A. C. Yücel, and E. Michielssen are with the Department of

Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109 USA (e-mail: liuyangz@umich.edu; acyucel@umich.edu;
emichiel@umich.edu).
V. Lomakin is with the Department of Electrical and Computer Engineering,

University of California, San Diego, CA 92093 USA (e-mail: vlomakin@ucsd.
edu).
Color versions of one or more of the figures in this letter are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LAWP.2014.2350967

for parallelizing a wide variety of computational electromag-
netics (CEM) algorithms [5], [6]. Here, we present an efficient
GPU implementation of the ML-PWTD algorithm (henceforth
termed GPU-ML-PWTD) that parallelizes all stages of the
ML-PWTD scheme, ranging from near-field calculation to
construction and translation of outgoing rays, processing and
projection of incoming rays, and vector interpolation and
filtering operations; the present work extends a previous im-
plementation that only parallelized two of these stages [7]. The
proposed GPU-ML-PWTD algorithm is successfully applied to
the computation of transient EM fields generated by large-scale
dipole constellations.

II. DIRECT SCHEME AND ML-PWTD ALGORITHM

This section summarizes the main features of the ML-PWTD
scheme and introduces notation pertinent to the description of its
GPU implementation in Section III. For a detailed description
of the ML-PWTD scheme, the reader is referred to [1] and [2].
Let denote an arbitrarily shaped surface supporting the current
density . The time-differentiated electric (E) field gener-
ated by is

(1)

where denotes the time derivative, and are the free-space
permeability and speed of light, is the identity dyad,

is the distance between source point and observation
point , and is the delta Dirac function. Assume that
is approximated by surface-bound point dipoles as

(2)

Here, and are the th dipole’s position and direction,
and is its temporal signature, which is band-limited to
maximum frequency and quasi-time-limited
to . To evaluate interactions between these dipoles,
the temporal signature oftentimes is discretized as

(3)

where is the time-shifted Lagrange inter-
polant [8] and denotes the time-step size with
oversampling factor and . Substituting
(2) and (3) into (1) and computing fields (excluding self-inter-
actions) at yields

(4)

1536-1225 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1672 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 13, 2014

where the entries of , , and are , ,
, and

(5)

with . Direct computation of E-fields along
dipoles [via (4)] requires memory and op-
erations for time-steps. These computational requirements
can be reduced to and via the
ML-PWTD algorithm.
In the ML-PWTD scheme, a fictitious box that encloses

is recursively subdivided into eight smaller boxes a total of
times [1], [2]; boxes of the same dimension are said to

belong to the same level , . There exist approx-
imately nonempty boxes (i.e., groups) at level , each of
which can be enclosed by a sphere of radius
with . Starting from level (coarsest level),
two groups and centered about and residing at the
same level form a “far-field” pair if: 1) the distance between
their centers exceeds a certain threshold,

( ); and 2) their parent boxes do not
constitute a far-field pair. Groups at level 1 (finest level) that do
not constitute a “far-field” pair form a “near-field” pair. Con-
tributions to (4) stemming from interactions between dipoles
belonging to near-field group pairs are computed directly by
(5). To evaluate contributions to (4) due to interactions between
dipoles belonging to a far-field group pair at level , a local ap-
proximate prolate spheroidal (APS) function (see the
reference in [2]) that is band-limited to and ap-
proximately time-limited to , ,
is used to approximate current temporal signatures. Specifically,
the time signature of the th dipole in group at level is
broken into consecutive band-limited subsignals as

(6)
where and ; is
chosen such that the duration of each subsignal,

, is less than . To compute the time-
differentiated E-field along the th dipole (in group ) gener-
ated by the th dipole (in group ) for the th subsignal, first a set
of outgoing rays (of group ) in directions is constructed by
the convolution of the projection function with
the subsignal as

(7)

Here, the ray directions ,
, , fall along direc-

tions along and directions along , where
; is the spherical oversampling factor. Next,

the outgoing rays (of group ) are translated into incoming rays
(of group ) by the convolution of with the trans-

lator as

(8)

Finally, incoming rays are projected onto the th dipole by
convolving the projection function with the in-
coming rays and summing over all directions with quadrature
weights as

(9)

In (7)–(9)

(10)

(11)

where is the Legendre polynomial of degree and
. In practice, only outgoing/incoming rays of

finest level groups are constructed/projected directly from/onto
dipoles using (7)/(9); those of higher level groups are computed
via the global vector spherical interpolation/filtering [2].

III. GPU-ML-PWTD ALGORITHM

The ML-PWTD scheme for computing dipole interactions
consists of four stages: 1) calculation of near-field interactions
via classical methods; 2) construction of outgoing rays; 3) trans-
lation of outgoing rays into incoming rays; and 4) processing
and projection of incoming rays. These stages are interleaved
by: 5) global interpolation and filtering operations. A viable
GPU implementationmust comprehensively tackle all five com-
putational components of the scheme, which complicates its de-
velopment compared to other CEM schemes [5], [6]. We de-
lineate key ideas that guided the implementation of these five
computational components before embarking on their detailed
description.
An NVIDIA GPU consists of many streaming multiproces-

sors (SMs), each of which contains multiple cores. Under the
Compute Unified Device Architecture (CUDA) framework,
these SMs can execute a multithreaded function, termed kernel.
A group of 32 threads forms a basic execution unit, dubbed
a warp that is dynamically scheduled to one SM. Warps are
further combined into blocks such that all threads in one block
perform similar tasks that can be synchronized. Moreover, the
GPU provides several types of memory, including shared and
global units. Shared memory, which is private to one block,
has small capacity and low latency, while global memory,
which is accessible by all blocks, has large capacity but higher
latency. To alleviate any performance degradation due to the
use of high-latency global memory, the following overarching
strategies drove the development of our GPU-ML-PWTD
implementation: 1) Coalescing memory access of all threads in
a warp to contiguous memory addresses by careful arrangement



LIU et al.: GPU IMPLEMENTATION OF MULTILEVEL PLANE-WAVE TIME-DOMAIN ALGORITHM 1673

of threads/blocks as well as input/output data layouts. 2) Hiding
latency by scheduling more warps while a single warp in the SM
is accessing the global memory. This is achieved by assigning
sufficiently large number of warps (or equivalently threads
and blocks). 3) Minimizing the memory usage by storing only
necessary quantities (and calculating all others on the fly) and
parallelizing loops that require the least global memory access.

A. Near-Field Calculation

The interactions between dipoles in near-field groups are
computed by (5) for every time-step via launching one GPU
kernel. This operation can be performed on a GPU by par-
allelizing loops over source and observation groups, as well
as source dipoles and observer dipoles in each group. Note
that multiple writing to one entry of [in (4)] is required at
each iteration of the loops, which are over source groups and
source dipoles in one group. To this end, the loops that are
over observer dipoles in a group and observation groups are
parallelized via a “one thread per observer dipole” and “one
block per observation group” strategy, producing coalesced
global memory access. In this strategy, each thread in one block
computes the interactions between the observer dipole (that
the thread is responsible for) and source dipoles in all source
groups in the near-field interaction list of the observation group.
To this end, threads collectively load and of dipoles
in each near-field pair (stored in contiguous spaces in global
memory) into their shared memory, calculate (5) on the fly, and
update the pertinent entry of .

B. Construction of Outgoing Rays

The outgoing rays of finest level groups are computed by (7)
for every time-steps by launching one GPU kernel. This
computation can be carried out on a GPU by parallelizing loops
over temporal samples of a subsignal, dipoles of a group, di-
rections, and groups. Note that multiple access to the memory
occupied by one outgoing ray is required in each iteration of
the loops over temporal samples of subsignals and dipoles of
a group. For that reason, the loops that are over directions and
groups are parallelized via a “one thread per direction” and “one
block per group” strategy. In such a strategy, the threads in each
block collectively load and of dipoles in one group into
their shared memory, calculate the APS interpolants on the fly,
use them to project onto one ray, and sum the projections
of all dipoles (in the source group) to compute (7).

C. Translation of Outgoing Rays into Incoming Rays

Translation between far-field group pair at level is
performed by (8) for every time-steps via launching GPU
kernels, where is a constant that depends on . This op-
eration is executed on a GPU for each pair separately by the
following steps (Fig. 1).
1) The th outgoing ray of group , (depicted by
a rectangular block in Fig. 1), is Fourier transformed to the
frequency domain, .

2) The Fourier transform of the translator is di-
rectly computed in the frequency domain on approximately

samples (see [2] for analytical expressions) and then
multiplied with the Fourier transform of the outgoing rays

Fig. 1. GPU implementation of one translation operation.

Fig. 2. GPU implementation of one spherical filtering operation.

of group , ; both operations are parallelized
via a “one thread per frequency sample” and “one block per
direction” strategy, thereby producing coalesced memory
access.

3) The resulting data is inverse Fourier transformed into
the time domain and the incoming ray of group ,

, is updated.
In steps 1 and 3, Fourier transforms are performed by the
batched CUDA fast Fourier transform (CUFFT) library that
allows simultaneous execution of FFTs; the
transforms are accelerated by extending the sizes of frequency
and temporal sequences to powers of two by zero padding.

D. Processing and Projection of Incoming Rays

The incoming rays of finest level groups are projected onto
the dipoles by (9) for every time-step by launching a GPU
kernel. This projection can be performed on a GPU by paral-
lelizing the loops that are over directions, dipoles of a group,
and groups. Since multiple access to the memory space of a
dipole of a group is required at each iteration of the loop over
directions, loops that are over dipoles of a group and loops
over groups are parallelized by a “one thread per dipole” and
“one block per group” strategy. Each thread calculates the APS
interpolants for all directions and uses them to update fields
along the dipole.

E. Spherical Interpolation/Filtering

The outgoing/incoming rays of groups at higher levels
(i.e., ) are computed using the global vector spherical
interpolation/filtering scheme of [2]. (Note: Here, only the
GPU implementation of spherical filtering to obtain incoming
rays is explained for the sake of brevity as that interpo-
lates outgoing rays is very similar.) The incoming rays of a



1674 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 13, 2014

group at level consist of two transverse components, i.e.,
. These com-

ponents are obtained by filtering the transverse components of
the incoming rays of the parent group at level , which are

and . This filtering opera-
tion is performed on a GPU by the following steps (Fig. 2).
1) The forward FFTs of and

are computed along the -dimension.
2) The Fourier coefficients, and ,

, are truncated in the spectral do-
main via fast spectral truncation and correction [2] and the
truncated Fourier coefficients, and ,

, are obtained. The truncation and
correction operations are parallelized via a “one thread per

sample” and “one block per sample” strategy;
each thread calculates and for one
and one ; again, this procedure yields coalesced

memory access.
3) and are obtained by inverse
FFTing and .

Note that GPU kernels performing these steps are launched for
each group separately. In steps 1 and 3, FFTs are performed by
the batched CUFFT library, which allows simultaneous execu-
tion of forward FFTs and
inverse FFTs.

IV. NUMERICAL RESULTS

This section presents several numerical tests that demonstrate
the accuracy and efficiency of the proposed GPU-ML-PWTD
algorithm. All tests involve a set of dipoles that are
randomly oriented and located on square plates with
edge length ranging from 1.5 m to 9 m

. The dipoles’ temporal signature is
, where

, MHz, GHz, and
is a random real number between 0 and 1. The magnitudes

of the time derivatives of the E-fields along the dipoles, ,
, , are computed for

time-steps with ns. In what follows, the
GPU and CPU implementations of the direct scheme are
termed GPU-Direct and CPU-Direct, respectively. GPU and
serial CPU implementations (double precision) are executed on
a Tesla C2050 device and an Intel Xeon E5-2670, respectively.
First, for an arbitrarily selected dipole, the obtained by

CPU-Direct, CPU-ML-PWTD, and GPU-ML-PWTD schemes
are compared ( ) (Fig. 3). The norm error of
the E-field computed by the GPU-ML-PWTD scheme is

(compared to the exact value obtained by the CPU-Di-
rect scheme), while the relative difference between the E-field
values obtained by the CPU-ML-PWTD and GPU-ML-PWTD
schemes is around machine precision.
Second, the computational time for each stage of CPU-ML-

PWTD and GPU-ML-PWTD schemes is tabulated for
and (Table I). Note that the computational

time for GPU-ML-PWTD scheme includes the time of data
transfer that is performed at the beginning and end of each stage.
As increases, the speedup achieved by GPU-ML-PWTD

Fig. 3. Comparison of obtained by CPU-direct, CPU-ML-PWTD, and
GPU-ML-PWTD schemes.

Fig. 4. (a) Total computation time and (b) memory requirement of CPU-Direct,
GPU-Direct, CPU-ML-PWTD, and GPU-ML-PWTD schemes.

TABLE I
COMPUTATION TIME FOR EACH STAGE OF CPU-ML-PWTD AND

GPU-ML-PWTD SCHEMES (IN SECONDS) AND THE RATIO BETWEEN THEM

scheme at each stage increases due to larger number of threads
and blocks that are being leveraged.
Finally, the overall computational time and memory re-

quired by the CPU-Direct, GPU-Direct, CPU-ML-PWTD,
and GPU-ML-PWTD schemes are compared for increasing

(Fig. 4). Here, the parallelization strategy described in
Section III-A was applied to the GPU-Direct scheme. The
GPU-Direct scheme achieves 54.4 –76.3 speedup, while
GPU-ML-PWTD scheme achieves 30.4 –53.3 speedup, and
outperforms the other three schemes as increases [Fig. 4(a)].
As the GPU-Direct scheme computes matrix elements of on
the fly as opposed to the CPU-Direct scheme that precalculates



LIU et al.: GPU IMPLEMENTATION OF MULTILEVEL PLANE-WAVE TIME-DOMAIN ALGORITHM 1675

them, it requires global memory [Fig. 4(b)]. (Note:
Calculating on the fly would result in dramatically higher
computation time for the CPU-Direct scheme.) On the other
hand, GPU-ML-PWTD scheme achieves substantial memory
reduction compared to CPU-ML-PWTD scheme since it only
stores ray data at one or two levels. The maximum number
of sources for the GPU-ML-PWTD scheme is
and limited by the 3-GB global memory. In addition, the
performance of all schemes complies with the theoretical
complexities.

V. CONCLUSION

An implementation of ML-PWTD algorithm that ex-
ecutes all PWTD stages on a GPU was presented. The
proposed implementation achieves 50 speedup and up to
75% memory reduction compared to its CPU counterpart.
Efforts to embed the proposed implementation within classical
marching-on-in-time-based integral equation solvers and hy-
bridization with CPU-parallel methods are underway.

REFERENCES
[1] A. A. Ergin, B. Shanker, and E. Michielssen, “The plane-wave time-

domain algorithm for the fast analysis of transient wave phenomena,”
IEEE Antennas Propag. Mag., vol. 41, no. 4, pp. 39–52, Aug. 1999.

[2] B. Shanker, A. A. Ergin, M. Lu, and E. Michielssen, “Fast analysis of
transient electromagnetic scattering phenomena using the multilevel
plane wave time domain algorithm,” IEEE Trans. Antennas Propag.,
vol. 51, no. 3, pp. 628–641, Mar. 2003.

[3] N. Liu, M. Lu, B. Shanker, and E. Michielssen, “The parallel plane
wave time domain algorithm-accelerated marching on in time solvers
for large-scale electromagnetic scattering problems,” in Proc. IEEE Int.
Symp. AP-S/URSI, 2004, pp. 4212–4215.

[4] Y. Liu, H. Bağcι, and E. Michielssen, “Solving very large scattering
problems using a parallel PWTD-enhanced surface integral equation
solver,” in Proc. IEEE Int. Symp. AP-S/URSI, 2013, p. 106.

[5] S. Li, R. Chang, A. Boag, and V. Lomakin, “Fast electromagnetic in-
tegral-equation solvers on graphics processing units,” IEEE Antennas
Propag. Mag., vol. 54, no. 5, pp. 71–87, May 2012.

[6] J. Guan, S. Yan, and J. M. Jin, “An OpenMP-CUDA implementation of
multilevel fast multipole algorithm for electromagnetic simulation on
multi-GPU computing systems,” IEEE Trans. Antennas Propag., vol.
61, no. 7, pp. 3607–3616, Jul. 2013.

[7] Y. Liu, V. Lomakin, and E. Michielssen, “Graphics processing unit-
accelerated implementation of the plane wave time domain algorithm,”
in Proc. 28th Annu. Rev. Prog. Appl. Comput. Electromagn., 2012, pp.
1–6.

[8] G. Manara, A. Monorchio, and R. Reggiannini, “A space-time dis-
cretization criterion for a stable time-marching solution of the electric
field integral equation,” IEEE Trans. Antennas Propag., vol. 45, no. 3,
pp. 527–532, Mar. 1997.


