
Local second order Møller-Plesset theory with a

single threshold using orthogonal virtual orbitals:

A distributed memory implementation

Tianyi Shi,† Zhenling Wang,‡,¶ Abdulrahman Aldossary,§ Yang Liu,† Xiaoye S.

Li,∗,† and Martin Head-Gordon∗,‡,¶

†Applied Mathematics and Computational Research Division, Lawrence Berkeley National

Laboratory, Berkeley, California 94720, USA

‡Department of Chemistry, University of California, Berkeley, California 94720, USA

¶Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

94720, USA

§Department of Chemistry, University of Toronto, Toronto, ON M5S 1A1, Canada

E-mail: xsli@lbl.gov; mhg@cchem.berkeley.edu

Abstract

In order to alleviate the computational burden associated with superlinear compute

scalings with molecular size in electron correlation methods, researchers have developed

local correlation methods that wisely treat relatively small contributions as zeros but

still yield accurate energy approximation. Such local correlation techniques can also

be combined with parallel computing resources to obtain further efficiency and scala-

bility. This work focuses on the distributed memory parallel implementation of a local
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correlation method for second order Møller-Plesset (MP2) theory. This method also

only has a single threshold to control the dropping of terms, and accuracy of different

computing kernels in the algorithm. The process partitioning strategy and distributed

parallel implementation with message passing interface (MPI) are discussed. In par-

ticular, the algorithm relies on a fixed sparsity pattern matrix multiplication and a

corresponding distributed conjugate gradient solver, which exhibits almost linear scal-

ing in both strong and weak scaling analysis. Numerical experiments on a range of

molecules, including linear chains and molecules with 2 and 3-dimensional character,

are reported. For example, with only 32 MPI ranks, this MP2 implementation can

calculate the correlation energy of vancomycin in def2-TZVP basis within 0.003% ac-

curacy (10−6.5 threshold) in half an hour, where the same problem is unfeasible to solve

with sequential or pure shared memory implementations.

1 Introduction

Computational quantum chemistry calculations have become an indispensable “third leg” of

chemical research, joining theory and experiment in diverse studies of molecular structure,

properties, and reactivity. The most widely used quantum chemistry methods are those based

on Kohn-Sham (KS) density functional theory (DFT),1 which provides an in-principle exact

framework to describe molecules in their electronic ground states. In practice, approximate

density functionals are necessary,2 and the most accurate functionals today3,4 are those on

the fifth, or highest rung of the Jacob’s Ladder classification.5 Fifth rung functionals can

be grouped into three types,6 each of which involves the evaluation of an orbital-dependent

correlation energy correction to the dressed mean-field treatment typical of rungs four and

lower. Since both exchange and correlation are hybrids between wavefunction theory and

DFT, they are often called double hybrid (DH) functionals.4

The DH orbital correlation term is usually of the second order Rayleigh-Schrödinger per-
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turbation theory form, which reduces to the well-known second-order Møller-Plesset (MP2)

theory,7 when used with a mean-field Hartree-Fock reference, rather than a KS reference.

MP2 is still widely used in its own right because it is free of the self-interaction errors

(SIE) and self-correlation errors that sometimes cause poor performance in density func-

tionals.8 Examples include intermolecular interactions involving ions,,9,10 ionic liquids,11,12

short-range amino acid contacts,13 as well as accurate treatment of hydrogen bonding.14–16

Additionally it is worth mentioning that modifications to MP2 have been introduced to

improve its accuracy, beginning with spin-component scaling,17,18 as well as attenuation of

long-range contributions.19,20 More recently regularization of the potentially divergent con-

tributions associated with small occupied-virtual energy gaps has attracted attention.21–24

However, it is the rung 5 functionals that are the most successful modification.25–27

From a computational point of view, MP2 (by which we mean both conventional MP2

and the corresponding PT2 of rung five density functionals) is the simplest and the most eco-

nomical model for wavefunction-based electron correlation. The computational scaling rises

as O(M5) with molecule size, M , if MP2 is implemented with canonical molecular orbitals

(MOs) that diagonalize the Fock operator, but are delocalized over the entire molecule. Use

of the resolution of the identity (RI) approximation28–31 replaces 4-center two-electron re-

pulsion integrals (ERIs) by linear combinations of 3- and 2-center ERIs, and means that the

storage required for MP2 theory rises only as O(M3). By comparison, mean-field theories

require O(M3) computation asymptotically and O(M2) storage, so the MP2 step dominates

for large molecules.

Physically, there is no reason why MP2 compute costs should rise O(M5) with M . Elec-

trons are short-sighted,32 and long-range correlations (dispersion forces) decay as R−6 or

faster.33 Computationally, it is just a consequence of delocalized MOs, and therefore for

molecules with HOMO-LUMO gaps, it is possible to spatially localize the MOs before the

MP2 procedure. It is then a matter of identifying the subset of significant amplitudes that
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contribute to the correlation energy. That is the central challenge of local correlation theory

which began with the work of Pulay and Saebø.34,35 While a rich variety of local correla-

tion methods have since been proposed,36–38 it is methods descended from the Pulay-Saebø

approach,39 combined with the use of pair natural orbitals (PNOs) and the RI approxima-

tion,40 that have seen widest use to date. The resulting PNO-LMP2 methods41,42 achieve

linear scaling for gapped systems once the physical dimensions significantly exceed the size

of localized orbitals. This clearly depends directly on the target accuracy. While we can-

not review such methods in detail, a variety of alternative methods with complementary

strengths have also been developed in recent years43–46

We recently proposed a promising approach to local MP2 (LMP2) that has several dis-

tinctive features.47,48 First, the algorithm employs only a single threshold to control accuracy

and compute cost. This makes it relatively straightforward for a user to select the optimum

choice for a given application: as we demonstrated higher precision is required for problems

that involve delicate global energy differences, which may be wasted in other contexts such

as a potential energy surface scan. Second, the algorithm avoids the use of projected atomic

orbitals (AOs) and PNOs for the virtual space and instead uses a single set of valence-virtual

/ hard-virtual (VV-HV) orthogonal orbitals (based on earlier work49). This simplifies imple-

mentation, and, intriguingly, leads to lower memory demand.47 The initial implementation

that we recently reported employs shared memory parallelism via OpenMP (OMP).48 In

this work, we seek to go beyond that limitation and report an optimized distributed memory

implementation.

The motivation for doing so is that improvements in compute power over the past decade

or more have come almost entirely from increased parallelism, as limits on heat dissipation

have prevented growth in clock frequencies. Parallelism has developed at three broad levels:

first, the resources available to a given processor, and the number of instructions it can

issue per cycle; second, at the shared memory parallel level, and third at the distributed
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memory parallel level. Only by exploiting all three levels of parallelism can a program

exploit the distributed memory resources to expand the size of problem that can be solved,

and the distributed compute resources that can reduce time to solution. Furthermore, a

linear scaling algorithm is the ideal candidate for parallelism. If a reference single node job,

which approaches the memory limit controlling maximum job size, has linear scaling, then

each doubling of molecular problem size and compute resources in principle enables solution

of a problem that cannot be solved without the doubling of compute resources. In the ideal

case, this weak scaling test would require only constant elapsed time.

There has been considerable previous effort to develop parallel MP2 algorithms, some of

which was summarized in a major review on parallel many-body methods,50 as well as other

reviews.7 Early efforts focused on traditional canonical (i.e. non-local) MP251,52 with a fo-

cus on RI-MP2.53–56 An implementation of the K-computer demonstrated performance into

the petaflop regime,57,58 and an implementation on the Summit machine has been recently

reported,59 using a fragment MO approach. As fragment approaches consistent with a set of

dense MP2 calculations, they are relatively attractive targets for parallelization.60–63 Other

fragment-like approaches include the MP2 version of the divide-expand-consolidate (DEC)

approach64 which has been implemented in massively parallel fashion.,65–67 as well as the

cluster-in-molecule (CIM) approach.68–71 Local correlation methods present a greater chal-

lenge for parallelization because they are relatively unstructured calculations rather than a

structured assembly of multiple dense MP2 calculations. Nevertheless, a medium-scale par-

allel implementation has been reported for the PNO-LMP2 method.42 DLPNO calculations

at the double-hybrid DFT level can also be parallelized.72

Our main contribution in this paper is to develop a distributed memory parallel im-

plementation of the single threshold MP2 using message passing interface (MPI). We treat

the local MP2 algorithm as three sub-problems: 1) construction of local density fitting, 2)

generation of the ERI tensor, and 3) solve of the amplitude tensor. We then design process

5



partitioning schemes and parallel strategies separately for these three steps. In addition,

we use a novel linear algebra formulation to express the problem, so that understanding

and development of this parallel sparsity-enforced algorithm become simpler. In numeri-

cal experiments with both 1D and higher-dimensional molecules, our distributed parallel

MP2 implementation showcases good scalability. Particularly, the solver step exhibits al-

most linear scaling in weak scaling tests on linear alkanes with up to 120 used MPI ranks.

Furthermore, with larger memory resources, our implementation extends the capabilities

of the MP2 method, which now can calculate correlation of molecules that are previously

considered infeasible for sequential or pure shared memory algorithms, such as linear alkane

C600H1202 and vancomycin in def2-TZVP basis with 10−7 accuracy. Finally, compared to the

previous pure OpenMP implementation, this distributed memory parallel solver can achieve

a 50x speedup, especially when 64 to 128 MPI ranks are involved.

The outline of this paper is as follows. We start with a mathematical formulation of

the MP2 method and our sparsity-enforced algorithm in section 2. Then, we describe our

distributed memory implementation in section 3, including a couple of data distribution

schemes and a distributed conjugate gradient (CG) method. Next, we present the perfor-

mance of this parallel algorithm in section 4 through some examples. Finally, in section 5,

we summarize the benefits of our algorithm and discuss some potential future directions.

2 Theory

In this section, we first introduce some linear algebra and chemical notation. Then, we

formulate the MP2 energy as a result that requires solving a linear system and introduce our

solver that maintains a fixed sparsity pattern. Using this solver, we can achieve significant

computational and storage efficiency. In both theory and implementation, we limit ourselves

to the case of restricted closed shell orbitals, although there is no obstacle, apart from effort,
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in generalizing to unrestricted orbitals.

2.1 Notation

Throughout this manuscript, we use nocc and nvirt to denote the number of elements in

occupied and virtual MO basis respectively. We always use lowercase letters 1 ≤ i, j ≤ nocc

to denote occupied orbitals, and 1 ≤ a, b ≤ nvirt to denote virtual orbitals.

We use capital letters to represent all linear algebra storage formats, including vectors,

matrices, and tensors, in this paper. For example, given a dataset of n1n2 elements, we can

use X to represent these data as a vector of size n1n2 × 1, or a matrix with column major

ordering of size n1×n2. We reserve some letters only for MP2 related concepts. Specifically,

Focc and Fvirt are the Fock matrices corresponding to occupied and virtual MOs respectively,

and J is used for the ERI matrix computed via double integrals

Ja,i,b,j = (ia|jb) =
∫
dr

∫
dr′ϕa(r)ϕb(r

′)
1

|r − r′|
ψi(r)ψj(r

′), 1 ≤ i, j ≤ nocc, 1 ≤ a, b ≤ nvirt,

(1)

where ϕ and ψ are basis functions for virtual and occupied MOs. In addition, we use

Ka,i,b,j = (ib|ja), and T to represent the wave function amplitudes we aim to obtain in MP2.

For Fock matrices, we use subscripts such as (Focc)i,j and (Fvirt)a,b to access one specific

element of the matrices. Comparatively, the ERI matrix J ∈ Rnoccnvirt×noccnvirt has a much

larger size, and can be partitioned into submatrices in the form of

J =


J1,1 · · · J1,nocc

...
...

Jnocc,1 · · · Jnocc,nocc

 . (2)

In this scenario, the subscripts Ji,j ∈ Rnvirt×nvirt for 1 ≤ i, j ≤ nocc are used to denote
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submatrices. This partition can be applied to K as well. Because of the symmetry in (1),

we see that both J and K are symmetric matrices, and Ji,j = KT
i,j for all pairs of i and j.

2.2 MP2 method as a linear system solver

In this paper, we introduce a linear algebra formulation of the MP2 method. Unlike element-

wise computations in existing literature, we use matrix representations, which offer a clean

formulation and straightforward vectorization schemes in practice. The MP2 method com-

putes the electron correlation energy by taking the inner product between the ERI matrix

J and the wave amplitudes T

Ecorr = J · T, (3)

where T is recovered via solving a linear system

∆T = 2J −K = C. (4)

Here, we have

∆ = I ⊗ I ⊗ I ⊗ Fvirt + I ⊗ I ⊗ Focc ⊗ I + I ⊗ Fvirt ⊗ I ⊗ I + Focc ⊗ I ⊗ I ⊗ I, (5)

where ⊗ denotes the Kronecker product between two matrices. This matrix representation

holds generally for any orthogonal orbital basis, whether the basis is canonical, pseudo-

canonical, or non-canonical. One can easily verify that these equations match with element-

wise computations in the scenario of canonical orbital basis. In fact, if the MO basis is

not orthogonal so that we have nontrivial overlap between occupied or virtual MOs, we can

simply replace the identity matrices in (5) by overlap matrices. In addition, we note that C is

symmetric, and the partition (2) can be applied to C. As a result, we know T is symmetric,

and can share the same partitioning. This allows us to design a solver to obtain T block by
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block.

We use the method described in ref. 47 to aim for a solution T that has the same sparsity

pattern as the right-hand-side C while solving (4). We achieve this via only solving for the

values at the desired positions. For example, figure 1 (left) represents a linear system with a

right-hand-side vector that has nonzeros at the first and third positions. In order to let the

solution have the same sparsity pattern, we manually remove the second and fourth rows

and columns in the matrix to obtain a reduced system as indicated in figure 1 (right). This

leaves us with a reduced 2× 2 dense system to get a sparse solution.

Figure 1: Left: Original linear system with a sparse right-hand-side. Right: A reduced linear
system where rows and columns correspond to the zeros are removed, so that the solution has the
same sparsity pattern as the right-hand side.

In practice, building ∆ in (5) and taking submatrices for the reduced system is both

computationally expensive and memory inefficient. Therefore, we use the iterative Krylov

subspace method to keep the sparsity pattern unchanged throughout the iterations. In

particular, since the Fock matrices Focc and Fvirt are both symmetric, we use the conjugate

gradient (CG) method. This requires us to design a procedure that utilizes the Kronecker

structure of ∆ to efficiently perform an operation

Y = f(∆X), (6)

where f is a linear operator to enforce Y share the same sparsity pattern as X. In MP2, this

indicates that the sparsity pattern of C in (4) is carried over throughout the CG iterations.
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2.3 Multiplication with a fixed sparsity pattern

In this section, we describe how to perform (6) efficiently without forming ∆ explicitly. This

is the basic building block in the CG method and sheds light on data distribution schemes

discussed in the following section.

We start by analyzing the multiplication ∆X. In particular, we treat the four terms of

∆ in (5) separately. With some manipulations, we find that

Y (1) = (I ⊗ I ⊗ I ⊗ Fvirt)X

is equivalent to

Y
(1)
i,j = FvirtXi,j, (7)

for 1 ≤ i, j ≤ nocc. Similarly, the multiplication

Y (3) = (I ⊗ Fvirt ⊗ I ⊗ I)X

is equivalent to (
Y

(3)
i,j

)T

= FvirtX
T
i,j, 1 ≤ i, j ≤ nocc. (8)

Both (7) and (8) involve only multiplications with Fvirt, and can be performed individually

on each submatrix of X, which is ideal for parallelism.

Using the same technique to rewrite Kronecker products, we see that

Y (2) = (I ⊗ I ⊗ Focc ⊗ I)X

is equivalent to

Y
(2)
i,j =

nocc∑
k=1

(Focc)i,kXk,j, 1 ≤ i, j ≤ nocc. (9)
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In other words, each subblock (i, j) of Y (2) is a linear combination of blocks of X on block

column j, with coefficients taken from the ith row of Focc. We can also compute all subblocks

on the same block column of Y (2) together, and rewrite (9) as



(
Y

(2)
1,j

)T

...(
Y

(2)
nocc,j

)T

 = Focc


(X1,j)

T

...

(Xnocc,j)
T

 , (10)

where all matrices such as Y
(2)
1,j and X1,j are now treated as a vector with the same elements,

so the two constructed matrices on both sides of the equation have size nocc × n2
virt. In this

way, the multiplication is performed directly with Focc. Finally, the last multiplication

Y (4) = (Focc ⊗ I ⊗ I ⊗ I)X

is equivalent to

Y
(4)
i,j =

nocc∑
ℓ=1

(Focc)ℓ,jXi,ℓ =
nocc∑
ℓ=1

(Focc)j,ℓX
T
ℓ,i =

(
Y

(2)
j,i

)T

, 1 ≤ i, j ≤ nocc, (11)

where the second equality holds because both Focc and X are symmetric. In this way, the

multiplication result of (11) can be obtained via (10), which helps save computational effort

and storage.

Now the large matrix-vector multiplication with ∆ in (6) is transformed into smaller

matrix-matrix multiplications with the Fock matrices Focc and Fvirt, we then need to design

the linear operator f so that f
(
Y (1)

)
, f

(
Y (2)

)
, f

(
Y (3)

)
, and f

(
Y (4)

)
share the same sparsity

pattern as X, and thus the final solution to the reduced system (see Figure 1 (Right)) will

share the same sparsity pattern as the right-hand-side. We can reformulate this problem as
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finding a linear operator f such that

R = f(DS),

where D is a dense matrix, S is a sparse matrix, and R has the same sparsity pattern as S.

In order to align with how the reduced system is formed in Figure 1, i.e., removing rows and

columns corresponding to zeros, we define f separately for each column of S:

Rk = f(DSk) = P (k)DP (k)Sk, (12)

where Rk and Sk are the kth column of R and S, and P (k) is a diagonal matrix with

P (k)
p,p =


1, Sp,k ̸= 0

0, otherwise

.

For example, consider a simple 4× 4 example

R = f


D



∗ ∗

∗ ∗

∗

∗




,

where each ‘∗’ denotes a nonzero number in the sparse matrix S. Then from (12), we can
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represent the operation to obtain the first column of R by



∗ ∗

∗ ∗

∗

∗


= f





∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗





∗ ∗

∗ ∗

∗

∗




,

where the elements used and computed are labeled by ∗. Similarly, we can use the same

technique to get the other three columns of R. With this multiplication kernel, we ensure

that Y and X have the same sparsity pattern in (6), and the multiplication only involves

submatrices of Focc and Fvirt.

3 Implementation

In this section, we present the implementation details on how we use distributed parallel pro-

gramming to build J by local density fitting and perform the CG iterations. Specifically, we

implement our algorithms with MPI,73 which is a distributed memory framework. Through-

out the following sections, we use ‘local computations’ to indicate calculations performed

solely on one MPI rank, and ‘communications’ to denote the interactions among multiple

ranks. Apart from message sending and receiving, communications also include a ‘waiting’

phase, where one or more processes remain idle until others finish the work so that further

computations can take place. In general, the overall running time of a distributed paral-

lel algorithm is the summation of local and communication time. To describe our parallel

algorithm clearly, we refer to some standard MPI functions. These primarily include

• Send : the operation of sending some array of memory from one MPI rank to another.

• Receive: the operation of receiving the memory sent by Send.
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• Allreduce: the operation of reducing values from all ranks to one value and storing it

on all ranks.

Note that although a processor is allowed to send messages to itself, in this manuscript we

assume that communications occur with at least two MPI ranks.

3.1 Data distribution

We start the discussion of our distributed memory parallel implementation with data distri-

bution to processes, which is essential in achieving load balance among MPI ranks. A good

load balance helps minimize the idle time of processes and is thus one of the keys to good

performance. To design a proper process partitioning strategy, we first describe the major

tasks distributed at different stages of MP2.

3.1.1 Sparse maps and integral lists

In local correlation theory, only nontrivial elements of an object are computed and stored.

“Sparse map”, introduced by Pinski and coworkers,41,74 is used to keep track of the indices of

these significant parts. Suppose there are two lists A = {α1, . . . , αm} and B = {β1, . . . , βn},

and each element αa ∈ A for 1 ≤ a ≤ m has a corresponding subset Ba of B, then the sparse

map A → B =
⋃m

a=1Ba contains a list of elements of B for all elements of A. Note that A

and B do not necessarily need to be two different lists.

Sparse maps can be concatenated via traversing through all the elements. For two sparse

maps A → B and B → C, concatenating them yields an A → B → C sparse map for lists

A and C. In particular, when B = A, we call A → A → C an “extended” sparse map

and shorten the notation to A →→ C. Notice that A →→ C contains more elements of C

compared to A → C. In our algorithm, we use five basic sparse maps i → j, i → a, i →

P, i→ µ, and a→ ν, where i and j are used to denote the set of all occupied orbitals, a for
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the set of all virtual orbitals, P for all auxiliary orbitals, and µ and ν for all atomic orbitals.

In our algorithm, we implement robust local density fitting (LDF) to calculate (ia|jb)

elements:

(ia|jb) = −
∑

i→P, j→Q

CP
ia (P |Q)C

Q
jb +

∑
i→P

CP
ia (jb|P ) +

∑
j→Q

CQ
jb (ia|Q) , (13)

where (ia|P ) represents the interaction among occupied MO, corresponding virtual MO, and

corresponding auxiliary orbitals, and can be computed with

(ia|P ) =
∫
dr

∫
dr′ϕi(r)ϕj(r)

1

|r − r′|
ϕP (r

′), 1 ≤ i, j ≤ nocc, 1 ≤ P ≤ naux. (14)

We generate (ia|P ) via an exhaustive search of two sparse maps i →→ a and i →→ P .

As extende maps are larger than the direct ones, we use them here for a more accurate

representation of (ia|P ). More intuitions and details of using extended sparse maps can be

found in.41,48,74 In addition, the fitting coefficient CP
ia is

CP
ia =

∑
i→Q

V −1
PQ (ia|Q), (15)

where (P |Q) is the fitting metric and can be computed similar to (14), and VPQ is a symmetric

submatrix of (P |Q), with row and column indices from the sparse map i→ P . With (ia|P )

calculated, CP
ia can be found by solving a symmetric linear system. Finally, (13) indicates

that the ERI matrix can be computed with matrix-matrix multiplications among (ia|P ),

(P |Q), and CP
ia. More details are explained in our preceding paper.48 From here on we focus

on our design on distributing data and computing jobs among several nodes.

From section 2, we discover that the multiplication in CG is performed with a partitioning

of the ERI matrix with respect to the occupied orbital basis, so we generate the ERI matrix

block by block. Therefore, the sparse maps and integral lists are also stored according to
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the occupied MO basis. As a result, during the phase of sparse map construction, each MPI

rank deals with a subset of the occupied MO basis and later communicates with each other

to handle all the sparse maps for the entire occupied MO basis.

We then encounter the most time-consuming step of the construction of the integral list

(ia|P ). In practice, to achieve better distributed memory load balance, for each auxiliary

orbital P , we conduct a preliminary computation of the number of (ia|P ) to be generated

using the number of elements in the sparse maps i →→ a and i →→ P . This allows us to

assign auxiliary orbitals to the MPI ranks in a way that each rank computes roughly the

same number of (ia|P ) elements.

3.1.2 ERI matrix and CG iterations

From section 2.3, we know multiplications (7) and (10) take place on a single ERI block

in (2), and multiplication (8) involves all blocks on the same block column. This suggests

that we need two process grids separately for ERI generation and CG solver, and we aim

to achieve load balance within each process partition and minimize communication to move

from the ERI grid to the CG grid.

In order to minimize communication costs for performing multiplication (8), the most

straightforward way to assign the processes is 1D block cyclic partitioning75 with respect to

the occupied MO basis. It is then natural to let the processes generate ERI blocks on the

block column they handle so that the ERI grid and the CG grid are in fact combined into

one. However, since only the lower triangular half of the ERI blocks need to be generated

due to symmetry, the standard 1D block cyclic partitioning leads to load imbalance for the

(nocc + 1)nocc/2 blocks. Instead, for B processes, we use a special 1D block cyclic process

grid with period 2B instead of B in the standard implementation. Mathematically, suppose

nocc = k(2B) for simplicity for some integer k, then the pth process, for 0 ≤ p ≤ B − 1,

handles block columns p, 2B − 1− p, 2B + p, 4B − 1− p, · · · . In this way, each process deals
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with 2k block columns and k(nocc + 1) blocks. In the special case that the ERI matrix is

dense, each block contains exactly n2
virt elements, so this load-balanced partitioning of blocks

indicates that all MPI ranks hold an equal number of elements. If nocc is not a multiple of

2B, then the process with the most duties handles at most one more block column and B−1

more blocks than the rest of the processes. We also discover that this partition strategy works

well in practice when the ERI matrix is sparse. For example, consider the simple molecule

CH4, which has 4 occupied MOs thus 4 block columns and 16 ERI blocks in (2). Figure 2

(Right) shows the 1D block cyclic process grid with 2 MPI ranks, and Figure 2 (Left) shows

how the processes generate the corresponding ERI blocks. In this example, Process 0 deals

with block columns 0 and 3, while Process 1 deals with block columns 1 and 2. As a result,

both processes generate 5 blocks on and below the diagonal in the ERI matrix construction

(red). In addition, for the upper triangular blocks, 1 block can be obtained directly with a

transpose (green) because it is owned by the same process, and 2 blocks need to be acquired

through communications (blue).

B0 B1 B1 B0

B0 B1 B1 B0

B0 B1 B1 B0

B0 B1 B1 B0

B0 B1 B1 B0

Figure 2: 1D block cyclic partitioning schemes for CH4. Left: the process grid for ERI generation,
where submatrices of ERI as in (2) are assigned to two processes. The numbers represent the process
the block belongs to. The red font indicates that the block is generated, the green font indicates
that the block is also on the same process and can be discovered through transpose, and the blue
font indicates that the block is obtained from communication. Right: the process grid for CG
solver, where block columns are assigned to the two processes to enable multiplication (8).

With this partitioning, the multiplication for all processes at each CG iteration can be

summarized in 3 steps: 1) Receive blue block data from the previous iteration from other

17



processes; 2) Perform (7), (10), and (8) on the blocks and block columns; 3) Send blue block

data back to the processes communicated with in step 1). Roughly speaking, at each CG

iteration, each process needs to send k(nocc+1)/B blocks to every other process, and receive

the same amount accordingly.

We can also design the ERI grid first, and partition the processes for the CG solver

accordingly. Since the sparse ERI blocks are constructed as a dense matrix first with the

two integral lists, and then post-processed to remove small numbers, an intuitive ERI grid

can be built based on the number of elements generated in the dense version of the blocks.

Via sorting the number of elements in each block, we can ensure that the processes work with

roughly the same number of blocks and elements in the ERI grid. In addition, we assume

implicitly that the same process owns the symmetric upper triangular counterparts to avoid

communication in ERI generation. This scheme is referred to as the 2D round-robin process

partitioning75 in this article. Figure 3 (Left) shows this ERI grid for the same example CH4

with 2 MPI ranks. In this case, each process generates 5 blocks on and below the diagonal

in the ERI matrix construction (red) and knows 3 blocks above the diagonal (green) via

transpose.

In order to minimize data transfer between the ERI grid and CG grid to perform multi-

plication (8), we let each block column belong to the process that owns the most number of

blocks on that column, while requiring all processes handle roughly the same number block

columns. In other words, suppose there are B processes, and nocc = kB for an integer k,

then each process constructs k(nocc+1)/2 blocks in the ERI grid and holds k block columns

in the CG grid. If nocc is not a multiple of B, this partitioning scheme still ensures that the

busiest process only handles at most 1 more block column and constructs at most 1 more

ERI block than the rest of the processes. Figure 3 (Right) shows the CG grid corresponding

to the ERI grid in Figure 3 (Left). As the 4 blocks on each block column are distributed

evenly to the processes, we can assign any 2 block columns to each process. In the figure,
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B0 B1 B1 B0

B1 B0 B1 B0

B0 B1 B0 B1

B0 B0 B1 B1

Figure 3: 2D round-Robin partitioning schemes for CH4. Left: the process grid for ERI generation,
where submatrices of ERI as in (2) are assigned to two processes. The numbers represent the
process the block belongs to. The red font indicates that the block is generated, and the green
font indicates that the block is also on the same process and can be discovered through transpose.
Right: the process grid for CG solver, where block columns are assigned to the two processes to
enable multiplication (8).

Process 0 performs multiplications in CG on block columns 0 and 1, and Process 1 performs

multiplications on block columns 2 and 3.

Similarly, the multiplication for all processes at each CG iteration can also be summarized

in 3 steps: 1) For each block column, Receive data not on this process from the previous iter-

ation from other processes; 2) Perform (7), (10), and (8) on the blocks and block columns; 3)

Send data back to the processes communicated with in step 1). Same as the 1D partitioning,

we can find that each process needs to send and receive approximately k(nocc +1)/B blocks

to every other process.

We notice that in practice, the two partitioning schemes have similar performance. This is

reflected in Table 1 (see section 4 for a detailed description of the columns of this table), which

contains timing results of running LMP2 on the alkane C220H442 with 1D and 2D process

partitioning using 44 MPI and 16 OMP threads per MPI. The computational efficiency of

the 1D and 2D process partitioning are on the same level for all phases in LMP2. We can

thus conclude that both process grids are competent with large problems using plenty of

computing cores. For the rest of this paper, we conduct experiments using the 2D process

grid, but similar timing and storage results should be expected for the 1D grid as well.

19



Table 1: Timing (seconds) of distributed memory LMP2 with 1D and 2D process partitioning on
C220H442 using 44 MPI and 16 OMP threads per MPI.

Scheme LDF ERI Solve Total

1D 29 166 128 323

2D 30 177 127 333

3.2 Distributed conjugate gradient

With the 2D round-Robin process partitioning and matrix multiplication routines to main-

tain the sparsity pattern introduced in section 2.3, we can propose a sparsity-enforced CG

solver for (4). Because of the Kronecker product structure of ∆, its diagonal elements are

combinations of those of Focc and Fvirt. Therefore, we can build Jacobi preconditioners easily

for each ERI block. Algorithm 1 summarizes this preconditioned CG solver to find the wave

function amplitudes matrix T . This is a straightforward distributed memory implementa-

tion of the CG method76 with the special matrix-vector multiplication we design to maintain

sparsity pattern. In particular, lines 2-7 specify the communication patterns to perform this

operation and are used repeatedly. In addition, coefficients used in CG iterations are com-

puted on each MPI rank and are reduced in lines 9-10. In practice, Algorithm 1 converges

in only a couple of iterations for our test cases.

4 Results and Discussion

In this section, we present some results on running our parallel MP2 on a range of molecular

systems. In particular, we focus on linear alkane chains with def2-TZVP basis set and the

frozen core approximation in section 4.2, a couple of molecules with 3D structures and various

basis sets in section 4.3, and some molecules emerging in applications in section 4.4. Our

distributed memory algorithm uses the 2D round-Robin process partitioning strategy (see
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Algorithm 1 Preconditioned CG for solving (4) on one MPI process.

Require: Fock matrices Focc and Fvirt, desired accuracy ϵ, right-hand-side Cp, initial guess
Xp, and set of block columns W handled by this process.

Ensure: Solution Xp on this process (overwriting the initial guess)
1: Construct Jacobi preconditioners Qp for the blocks on this process.
2: Send X̃p, blocks in Xp that are not in W , to corresponding processes.
3: Receive X̄p, blocks in B that are not part of Xp, from other processes.
4: Perform (7) and (8) on Xp.
5: Perform (10) on W .
6: Send transpose of blocks appeared in line 3 to the same list of processes.
7: Receive transpose of blocks appeared in line 2 from the same list of processes to finish

computing Zp = f(∆Xp) while keeping the fixed sparsity pattern.
8: Set Rp = Cp − Zp, Pp = Q−1

p Rp, and Yp = Pp.
9: Compute α0 = Rp · Yp and γ0 = ||Rp||2.
10: Allreduce to sum over all α0 and γ0 from different processes to get α and γ.
11: while

√
γ > ϵ do

12: Repeat lines 2 to 7 to compute Zp = f(∆Pp).
13: Compute Pp · Zp and Allreduce to sum and get β, and set ν = α/β.
14: Set Xp = Xp + νPp, Rp = Rp − νZp, and Yp = Q−1

p Rp.
15: Set β = α.
16: Repeat lines 9 to 10 to get α and γ.
17: Compute µ = α/β and set Pp = Yp + µPp.
18: end while

section 3.1), and is implemented in MiniQC, a lite version of Q-Chem77 with hybrid MPI and

OpenMP parallelism. All the experiments are conducted on the CPU nodes of Perlmutter, a

Cray EX supercomputer hosted by NERSC at Lawrence Berkeley National Laboratory with

2 AMD EPYC 7763 CPUs per node (i.e. 2× 64 = 128 cores per node).

In the experiments, we separate our timing results into 3 parts: 1) Local density fitting

(LDF) which contains the construction of sparse maps and preliminary information; 2) ERI

which is comprised of integral list formation and ERI generation; and 3) Solve which includes

the fixed sparsity CG solver and the correlation energy computation. These three labels

appear in the legends throughout the graphs in this section.
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Figure 4: OpenMP strong scaling (Left) and corresponding parallel efficiency (Right) of running
distributed LMP2 on 1 node for alkane C220H442. Each curve shows the result of utilizing different
number of cores on the node with different MPI ranks. Left: We see the best performance when
all 128 cores are used, and MPI parallelism is better than OpenMP parallelism. Right: The timing
of using 8 cores is set to be the benchmark, and we see 4 MPI ranks achieve best parallel efficiency
when more cores are used.

4.1 MPI and OpenMP setup

In our algorithm, OpenMP is used on each MPI rank. In other words, if we use B MPI

ranks with M OMP threads per MPI, then the total number of computing cores used is

BM . Figure 4 shows the time (Left) and corresponding parallel efficiency (Right) of running

our codes on C220H442 using 1 MPI rank, 2 MPI ranks, and 4 MPI ranks on 1 node with

different number of OMP threads per MPI respectively. The tests with 8 cores used are set to

be the benchmark for computing parallel efficiency. One can find that our algorithm achieves

the best performance while using all the cores on the node. In addition, if the number of

computing cores utilized is fixed, using 4 MPIs achieves the best parallel efficiency, especially

with a larger number of cores. This suggests that distributed memory parallelism is better

than shared memory parallelism in our algorithm, at the expense of higher storage costs.

Because of the memory usage of our algorithm, we can afford to use 4 MPI ranks with

32 OMP threads each on 1 node for smaller-sized problems (in terms of molecule structure,

basis functions, and desired accuracy), but we can only use 1 MPI per node for larger test
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cases. Table 2 shows the OpenMP strong scaling results of our codes performed on C400H802

with 10−6.5 accuracy using 16 MPI ranks on 16 nodes. Here, the 10−6.5 threshold indicates

that we treat elements smaller than 10−6.5 in ERI as zeros to create numerical sparsity in

the LMP2 method. We find that using all 128 cores on each node gives the best timing, so

we should use all possible computing cores if the number of MPI ranks is fixed.

In different scenarios, however, fully utilized nodes do not exhibit optimal time to solution

because of e.g. memory bandwidth limitations. For example, Table 3 shows the time and

energy consumption of running our codes on C400H802 using a total of 512 computing cores,

where we can freely choose the combination of MPI ranks and OMP threads used. In other

words, we are allowed to use as many nodes as we want. Only the first data point (4 MPIs

with 128 OMP each) in Table 3 fully uses the 4 nodes requested, but this combination has

the worst timing performance. This aligns with our previous observation that our MPI

parallelism is better than OpenMP parallelism to some extent. As a result, in experiments

with fixed computing cores such as weak scaling, one can use more MPIs with under-utilized

nodes for faster solutions of large problems. The trade-off is worse energy efficiency and

higher storage costs, which is not a zero sum game.

Energy efficiency is clearly an important metric to consider. Perlmutter jobs report an

estimate of energy consumption based on the elapsed time, the number of nodes employed,

and the fraction of each node’s cores that are used (see Table 3), and the stats show that using

fewer highly-occupied nodes leads to much lower energy consumption for fixed total number

of cores. For less than 20% more energy consumption, execution time can be reduced by

over 30% by changing from 4 fully utilized nodes to 8 half-utilized nodes, which is favorable.

However to reduce execution time another 15% (using 32 nodes at 1/8-utilization) requires

almost 300% more energy (than with 8 nodes). Clearly optimizing an objective function

that combines energy use and time-to-solution is potentially worthwhile in future work.
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Table 2: OpenMP strong scaling of distributed LMP2. Timing (seconds) of alkane C400H802 on
16 nodes using 16 MPI ranks and different numbers of OMP threads per MPI. Best efficiency is
achieved with fully used nodes.

OMP 32 64 128

Time (sec) 936 645 600

Table 3: Fixed computing cores test of distributed LMP2. Timing (seconds) and energy (mega-
joules) of alkane C400H802 using 512 cores with different combinations of MPI and OMP numbers.
Each MPI uses 1 node. Best timing performance is obtained with 32 MPI ranks and under-utilized
nodes, while lowest energy consumption is achieved with 4 MPI ranks and fully-utilized nodes.

Node 4 8 16 32 64

MPI 4 8 16 32 64

OMP 128 64 32 16 8

Time (sec) 1538 1030 936 865 891

Energy (MJ) 3.75 4.43 7.67 13.05 27.83

4.2 Linear Alkane Chains

The first set of experiments focuses on 1D alkane chains, which was one focus of the results

reported in our earlier implementation that did not employ distributed memory parallelism.48

In the calculations, we use the def2-TZVP basis set and the frozen core approximation.

We start with the alkane C400H802, which has 1201 occupied orbitals and 15611 virtual

orbitals. Figure 5 (Left) shows a strong scaling timing test with 8, 16, 32, 64, and 128

MPI ranks with 32 OMP threads per MPI. The numbers at the data points indicate the

parallel efficiency for different stages of the algorithm, where the test using 8 MPI ranks is

set to be the benchmark of computations. We can see that Solve scales best with respect

to the number of MPI ranks used, and has the best parallel efficiency. Since LDF and ERI

contain some sequential components to generate sparse maps and truncate (ia|jb) elements,

they have worse strong scalability compared with Solve. As a result, Total time scales worse

compared to Solve. Nevertheless, since the serial part is fast, the Total time still exhibits
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Figure 5: Left: MPI time strong scaling of our parallel MP2 method on the alkane C400H802.
Numbers on the curves indicate the parallel efficiency if the test with 4 MPI ranks is set to be the
benchmark. Solve shows almost linear scaling and best parallel efficiency. Middle: MPI memory
strong scaling on the same alkane C400H802. Right: Memory usage on each MPI rank when 16
processes are used to run our algorithm on C400H802. The difference among processes is small,
indicating good load balance.

good scaling. Figure 5 (Middle) shows the memory usage per MPI rank in the same strong

scaling setup. From the curve, we can tell an almost perfect linear scaling for storage costs.

Lastly, Figure 5 (Right) shows the storage cost on each MPI rank when we use 16 MPIs.

One can see that every MPI rank uses roughly 23 GB, which indicates a good load balance

for the chosen data distribution scheme.

We present the weak scaling result for a series of alkanes in Figure 6. In this experiment,

we use 64 computing cores for every 10 carbon atoms. For better efficiency (see Figure 4

and Table 3), we choose 32 OMP per MPI, so there are 2 MPI ranks for every 10 Carbon.

Therefore, the experiments range from C10H22 to C600H1202. For timing (see Figure 6 (Left)),

similar to the strong scaling result, we see good scaling behaviors in the Solve stage. Espe-

cially, starting from moderately long chain lengths (C40H82), the timing curve scales almost

linearly. Overall, the Total time behaves similarly to ERI construction, which contains se-

quential element truncation and nontrivial MPI communications. Still, the curves are close

to a linear scaling pattern, so we can anticipate a good performance of our parallel algorithm

when applied to even larger test cases. Because duplicated data with quadratic scaling of

number of orbitals, such as Fock matrices, are stored on each MPI rank for easier compu-

tations, we expect the storage costs to also grow quadratically with the linear increase of
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Figure 6: Weak scaling of time (Left) and storage cost (Right) of our algorithm on alkane chains
from C10H22 to C600H1202. We use 2 MPI ranks with 32 OMP per MPI for every 10 carbon atoms.
We see almost linear scaling for timing and quadratic scaling for memory consumption.

the number of MPIs. We can visualize this from the trend of the curve in Figure 6 (Right),

when the number of MPI used is larger than roughly 20.

Furthermore, Figure 7 shows the timing (Left) and memory (Right) requirements when

we apply our algorithm to a sequence of alkane chains with limited computing power and

three levels of accuracy threshold. Specifically, we use 16 MPI ranks with 32 OMP per MPI

on all alkanes CnH2n+2. For all levels of accuracy, even with a tight threshold of 10−7, that

delays the onset of linearity, we see good scaling for both timing and storage cost. The time

drop occurring at C560H1122 for 10
−5, C480H962 for 10

−6, and C360H722 for 10
−7 are the results

of changing from 4 MPIs per node to 1 MPI per node.

Finally, Table 4 shows the floating point operation (flop) rate (number of flops per unit

time), a performance metric other than time-to-solution, of using our algorithm on linear

alkanes. In particular, we test on C20H42 and C100H202 with basis def2-TZVP and accuracy

threshold 10−6.5, and report the flop rate (GFLOP/sec) of LDF, ERI, and Solve stages.

Numbers in this table come from the profiling tool CrayPat78 on Perlmutter. To get accurate

flop rate on CrayPat, we test with 1 OMP thread per MPI rank. For both tests, we observe

that ERI has the highest flop rate while Solve has the lowest. This is expected as we mainly
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Figure 7: Time (Left) and storage cost (Right) of our algorithm on alkane chains with fixed
computing power and three levels of threshold. All the experiments CnH2n+2 use 16 MPI ranks
and 32 OMP per MPI with a total of 512 computing cores, and we see good scaling for both timing
and memory.

use BLAS3 routines such as matrix-matrix multiplications in ERI construction, and BLAS2

routines such as matrix-vector multiplications in the CG solver. We use a combination of

BLAS2 and BLAS3 routines for sparse map generation, so the flop rate of LDF is in between

ERI and Solve. With another test to run C20H42 with 1 MPI and 1 OMP, we observe that

the flop rate we achieve for ERI is only about 10% of the Perlmutter optimal performance

of 39.2 GFLOPs on one CPU core. Therefore, we conclude that our implementation right

now is memory bound, and we will investigate further on this low flop rate performance in

the near future.

Table 4: Aggregate flop rate of distributed LMP2 on C20H42 and C100H202. 1 OMP thread is used
per MPI rank and the unit used is GFLOP/sec. ERI construction has the highest flop rate while
CG Solve has the lowest flop rate.

Test Node MPI LDF ERI Solve

C20H42 1 8 9.77 29.98 3.46

C100H202 4 16 45.15 76.99 6.80
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4.3 Higher dimensional compounds

In this section, we test our algorithm on some molecules with 3-dimensional structures to

further illustrate the efficiency and scalability of our algorithm. Figure 8 shows the testing

systems, including compact non-covalent binding systems buckycatcher and circumcircum-

coronene dimer (a fragment of graphene), two drug molecules paclitaxel and vancomycin,

and a small protein crambin. Geometries used for these molecules are included in the Sup-

plementary Information. Specifically, we use a strong scaling setting with 4, 8, 16, 32, and

64 MPI ranks and 32 OMP threads per MPI with different choices for the molecular basis

and threshold levels (see Figure 9), and we see good strong scalability. The missing data

point, which corresponds to using 4 MPI ranks for graphene, is the result of storage space

shortage on one node for the partitioned sub-problem. Throughout this section, the memory

we report is necessary for all calculations, but we see peak memory during constructions of

sparse maps and the (ia|P ) integral list. This is the same obstacle that hinders us from using

more MPI ranks on one node for large molecules. Therefore, one important ongoing task is

to reduce memory usage with a detailed peak memory usage profile, so that we can handle

large problems in certain conditions in the future with higher computational and memory

efficiency.

4.4 Comparison against reported timings using other algorithms

Finally, in this section, we run our LMP2 algorithm on some molecules for which timings

have been reported using other local MP2 algorithms. We note that there are at least two

intrinsic difficulties in making this type of comparison. First, different computer resources

are employed in each case, and second, the cost of local MP2 calculations increases very

strongly with the desired accuracy. For example, as we reported in our previous paper,48

making our drop tolerance ten times smaller requires roughly ten times more computation.
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Figure 8: Testing 3-D molecules: (a) buckycatcher C60@C60H28, (b) paclitaxel C47H51NO14,
(c) vancomycin C66H75Cl2N9O24, (d) circumcircumcoronene dimer C192H48, (e) crambin
C200H309N55O65S6. Color codes for atoms: C, black; H, white; O, red; N, blue; Cl, green; S,
yellow.

With these caveats in mind, we tested water clusters and DNA fragments43 and glycine

chains.79 Figure 10 shows examples of the structures of these systems, and their geometries

are included in the Supplementary Information, with structures taken from refs. 79,80. We

performed our calculations in the cc-pVDZ basis, with an accuracy threshold of 10−6.

Table 5 shows the timings (always with 32 OpenMP threads) and storage requirements

with different parallel computing configurations. From the table, we see that a threshold of

10−6, which typically recovers more than 99.99% of the correlation energy, takes 290 seconds

on DNA4, using 64 × 32 AMD Epyc Milan cores. For comparison, in ref. 43, the same

molecule needs 47 minutes of elapsed time using only 6 cores, and recovers only 99.9% of

the correlation energy. The distributed memory computing algorithm has reduced time to

solution by over a factor of ten, while our tighter thresholding has enabled a factor of ten

higher accuracy.
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Figure 9: Strong scaling of time (Left) and storage cost (Right) of our algorithm on catcher,
crambin, paclitaxel, vancomycin, and graphene. We use basis def2-SV(P) for crambin, and def2-
TZVP for all other experiments. In terms of accuracy, we use 10−5 for crambin and graphene, 10−6

for catcher and paclitaxel, and 10−6.5 for vancomycin.

As another comparison, we completed the (gly)50 calculation in 31 seconds using 16 nodes

(64 MPI processes) and 32 OpenMP threads. A state-of-the-art GPU implementation, which

was also evaluating gradient information (perhaps a factor of 2-3 extra work), takes 110

seconds79 using 8 NVIDIA Ampere A100 GPUs processors, which has, in principle, about

two times higher peak performance in double precision (156 TFLOPS vs 80 TFLOPS).

The GPU implementation relies on a fragment molecular orbital (FMO) approximation to

accelerate the calculations, which involves manual partitioning of the system into a set

of smaller jobs that are recombined to approximate the global calculation. This permits

dense linear algebra straightforwardly, leading to high floating point efficiency in the GPU

implementation. However, one cannot perform rigorous thresholding, as we do, and in

extreme cases the FMO method may not be able to yield stable accuracy as it depends

on fragmentation.81 Overall, while direct comparison is difficult, it is clear that our current

method yields very competitive times to solution as a result of the distributed memory

implementation, with the advantage of easily controllable accuracy.
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Figure 10: Molecular systems used to compare against previously reported local MP2 timings:
(a) Polyglycine chains; (gly)n, (b) DNA4, (c) (H2O)142. Color codes for atoms: C, black; H, white;
O, red; N, blue; P, orange.

5 Conclusions

In this manuscript, we have reported on a distributed memory parallel implementation of

a recently introduced local MP2 method48 to compute the MP2 electron correlation energy

with numerical precision controlled via a single threshold. Our implementation consists of a

distributed construction of sparse maps and ERI blocks, and a distributed conjugate gradient

method to compute the amplitude tensors. In particular, we use two process partitioning

strategies for different stages. We use 2D round-robin process partitioning to generate ERI

blocks corresponding to a pair of occupied orbitals (i, j), and conduct some multiplications

in CG. We use a different 1D cyclic block column partitioning for the remaining CG multi-

plications.

We tested our implementation on a sequence of linear alkanes and a set of molecules

with 3D structures. Good scalability was observed on strong scaling tests, weak scaling
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Table 5: Timing (seconds) and storage costs (megabytes) of realistic molecules using different
parallel configurations.

Molecule Node MPI LDF (s) ERI (s) Solve (s) Total (s) Memory (GB)

DNA1 16 16 0.39 10.19 7.51 18.22 7.85

DNA2 32 32 1.27 46.24 21.24 69.05 40.00

DNA4 64 64 4.95 234.95 49.6 290.13 122.32

(gly)10 8 32 0.34 7.38 2.63 10.38 5.2

(gly)20 16 64 0.84 11.01 3.15 15.03 11.76

(gly)30 16 64 1.61 15.71 4.92 22.28 18.54

(gly)40 16 64 2.46 20.94 4.38 27.84 25.66

(gly)50 16 64 3.83 22.48 4.88 31.26 33.13

(H2O)68 64 64 1.58 40.91 6.52 49.14 19.38

(H2O)142 64 64 9.09 241.35 15.17 266.07 58.27

(H2O)285 64 64 34.11 1080.12 31.31 1146.45 153

tests, and fixed computing resources tests. Relative to the original shared memory OpenMP

implementation48 there are two key advantages:

1. Leveraging the much larger memory resources associated with distributed computing

pays great benefits when applied to an algorithm such as local MP2 whose memory

requirements scale linearly with system size. This is a weak scaling benefit: we can

treat molecules that simply cannot be handled with shared memory parallelism due to

insufficient per-node memory. Examples include alkane chains beyond C200 as well as

higher accuracy thresholds which lead to larger memory requirements.

2. The time to solution is greatly reduced for even those problems that can still be solved

using shared memory parallelism. This strong scaling benefit is demonstrated here

by showing speedups of more than 50 times versus the OpenMP-only implementation

when 64 - 128 MPI ranks are employed. This leads to quite short time-to-solution,
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such as less than an hour for vancomycin in a def2-TZVP basis and a tight threshold.

Again this job could not be completed on a single node at all.

There is considerable scope for further development of our distributed memory parallel

implementation of linear scaling MP2. One important next step is to extend it to improved

versions of MP2, such as the size-consistent second-order Brillouin-Wigner theory,23,24 and

regularized MP2.22 Another important next step is to extend the approach to parallel local

MP3 and CCD/CCSD. Although additional developments of various tensor contractions for

these higher-order methods are needed, our parallel amplitude solver code can be reused

without many modifications, and the same is true for our process partitioning schemes for

different stages of the calculations. Another very desirable future direction is to involve the

usage of data sparsity in our algorithm. With the Kronecker products to represent ∆ in the

linear system, we can rewrite the linear system ∆t = c into a matrix or tensor Sylvester

equations. With further investigations of low-rank or hierarchical low-rank structures of the

ERI tensor and Fock matrices, we want to develop algorithms to find amplitude tensors with

Sylvester equation solvers, by utilizing both numerical sparsity and data sparsity.
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