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Abstract

It has long been clear that electron correlation methods exhibit unphysical compute

scalings with molecular size, which has motivated the development of local correlation

methods to discard effectively zero contributions in a controlled way to yield an ap-

proximate correlation energy. The ideal local correlation method should have a single

numerical threshold that controls the dropping of terms, with the ability to have that

threshold set small enough that the correlation energy is reproduced to enough signifi-

cant figures that the result is chemically identical. This work reports such a method for

1

mhg@cchem.berkeley.edu


second order Møller-Plesset (MP2) theory. The theory, implementation, and testing

of this local MP2 theory are reported. Thresholds ranging from 10−5 to 10−8, and

basis sets ranging from split valence plus polarization through to quadruple zeta are

assessed for local MP2 calculations on a range of molecules, including linear chains and

molecules with 2 and 3-dimensional character. The implementation is shared memory

parallel, via OpenMP, and yields roughly 50% parallel efficiency with 16 cores for a large

job. Considerable efforts were made to minimize memory demands, which increase as

thresholds are tightened. A variety of relative energy calculations are presented as a

function of threshold to provide some guidance to users on how to obtain adequate

precision at low compute cost. It is particularly clear that derivative properties require

tighter thresholds in order to achieve adequate precision.

1 Introduction

Solution of the Schrödinger equation is exponentially hard on a classical computer, notwith-

standing recent advances in performing full configuration interaction with selection of only

numerically significant amplitudes.1–7 As a result, approximations beyond the introduction

of a one-particle atomic orbital (AO) basis set8,9 continue to be mandatory. The most im-

portant concept associated with such approximations is that they should constitute a well-

defined (“black-box”) theoretical model chemistry,10 as first clearly advocated by Pople.11,12

Such models require no user input apart from the choice of model, a molecular geometry, net

charge and spin-state, and a finite one-particle basis set. They should also yield continuous

potential energy surfaces, be reasonably efficient to compute, and be acceptably accurate.

There are many ways to violate the ideas of a good model chemistry. For instance, specifying

a geometry-specific active space, such as only the 2 occupied π and 2 valence π∗ orbitals in

planar C4H6 is not a model chemistry. Of more relevance to our present topic, neither is

correlating only electrons in occupied orbitals that are less than some small distance (e.g. 4
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Å) apart from each other.

Whilst Kohn-Sham density functional theory (DFT)13 is the most widely used class

of model chemistries,14 great interest remains in the development of wavefunction theory

(WFT) model chemistries because they are systematically improvable. Wavefunction models

begin with the Hartree-Fock (HF) mean field reference determinant, |Φ0⟩, and its energy,

E0. The electron correlation effect of other determinants is then commonly modeled by low-

order Møller-Plesset (MP) perturbation theory (PT),15 such as MP2 theory, or by infinite

order coupled cluster (CC) theory,16,17 truncated at a relatively low level of excitation from

|Φ0⟩, such as CCSD18 or CCSD(T).19 Using KS orbitals, PT2 is also a component of double

hybrid density functional theory (DFT).20–22 The principal reason for the predominance of

DFT over WFT is the fact that the compute costs of DFT (or HF) rise asymptotically as

O(A3) with number of atoms, A, for a fixed choice of AO basis, while exact implementation

of MP2 scales O(A5), CCSD scales O(A6), and CCSD(T) scales O(A7). As we briefly review

next, such scalings are unphysical and can be circumvented both in principle and in practice.

Partial localization of electrons is a distinctive feature of molecules with significant

HOMO-LUMO gaps, ∆EHL. The one-particle density matrix (1PDM) in real-space, P(r, r′)

exhibits exponential decay with |r−r′|, with decay rate Γ ∝
√
∆EHL,

23 which in turn means

that occupied (and virtual) orbitals can be localized using a range of localization criteria.24

A set of localized virtual orbitals25 can then be obtained as projected atomic orbitals (PAOs)

from each AO, µ: ω(r)virta=µ = (1−P)ω(r)µ. For molecules much larger than the size of AOs,

the PAOs will be exponentially localized,26 although they are not only non-orthogonal, but

also linearly dependent (i.e., for N AOs, with n occupied, the rank of the PAO space is

N − n, although there are N PAOs). Nevertheless, since correlation amplitudes depend on

matrix elements over occupied (i, j) and virtual (a, b) orbitals, such as (ia|jb), it is clear

that there are only a linear number of significant ia products. Since each such product has

zero charge due to strong orthogonality, the magnitude of (ia|jb) behaves at long range like
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a dipole-dipole interaction:27–29 i.e., (ia|jb) ∝ |r − r′|−3. So with an appropriate set of lo-

calized occupied and virtual orbitals, the number of numerically significant (ia|jb) exhibits

only linear growth, O(A1), for a large enough molecule. This is the basis of local correlation

methods, which can likewise achieve O(A1) scaling for sufficiently large systems.

The genesis of modern local correlation methods was the seminal research of Pulay.25,30

These early local correlation models took advantage of localized occupied orbitals and PAO

virtuals as a basis to define “domains” of orbitals,31 using a type of overlap cutoff of roughly

0.2, a set of virtuals is assigned as being in the domain of each occupied orbital. The retained

double substitutions from a given pair of occupied orbitals are only to virtuals that lie in

the union of their two domains. In terms of model chemistry criteria, this approach only

becomes a good model in the limit where all numerically significant correlation amplitudes

are retained. Otherwise, the potential energy surface could not be smooth. In the early

days of local correlation, compute limits made this impossible, and therefore other models

were designed to guarantee smooth surfaces.32,33 However, having model chemistries for local

MP2 that are similar but not identical to MP2 (or any other target correlation theory) is

also undesirable. Therefore the most successful local correlation directions have been to

pursue methods capable of near-quantitive reproduction of the exact MP2 result, in pursuit

of linear scaling.34,35 Use of resolution-of-the-identity or density fitting approaches36 in local

MP2 was an important step forwards.37 A particularly important development was the use

of pair natural orbitals (PNOs)38,39 to define a compressed representation of correlation

amplitudes for a given pair of occupied orbitals.40 At the MP2 level, perhaps the most

advanced implementations of PNO local MP2 methods are the PNO-LMP2 method,41 and

the DLPNO-MP2 method.42 These approaches achieve full linear scaling and, as reported,

deviations from conventional MP2 in energy differences that can be 1 kJ/mol or less.

Other highly effective local MP2 methods have also been reported. As an alternative to

iterative solution of linear equations for the first order correlation amplitudes, the Laplace
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transform approach replaces the solver with a fixed number of quadrature points.43,44 With

use of localized orbitals, this becomes a basis for competitive fast local MP2 methods.35,45–48

Another family of fast methods is the divide and conquer paradigm49–52 as well as the divide,

expand, consolidate approach.53,54 Other fragmentation ideas have also led to high efficient

fast local MP2 methods.55–60 Tensor hypercontraction ideas have also been applied to MP2

to lower the formal scaling61–64 Combinations of these ideas have also proven effective.65–67

Implementation has been extended to include GPUs,68 as well as massively parallel com-

puting.52,69 Novel ideas continue to be put forwards, including an algorithm for the opposite

spin MP2 energy70,71 that avoids two-electron integrals,72 and another that employs Slater

orbitals.73 This diversity of approaches reflects the fact that the problem of developing an

optimal fast MP2 framework cannot be viewed as fully solved despite all the progress we

have briefly reviewed.

The goal of the research we report here is to develop a new approach to the goal of

approaching the exact MP2 limit, with the particular target of specifying a single numeri-

cal threshold to control the precision. The thresholds of most interest are those which can

ensure that the results are identical to conventional MP2 such that one need not label the

results as being from a local correlation calculation. We introduce the theory and algorithms

necessary to implement this strategy, which follows the prototyping that we have recently

reported.74 The first design decision is a representation of the virtual space. Rather than

the PAO/PNO strategy reviewed above, we take the potentially simpler approach of using a

set of non-redundant orthogonal virtual orbitals, partitioned into valence virtuals (VV) and

hard virtuals (HV),75 which are preconditioned by an atomic pseudo-canonicalization of the

HV space. Resolution-of-the-identity (RI) together with local fit domains are employed to

accelerate two-electron integral construction whilst retaining asymptotic linear scaling. To-

gether with use of the “ragged list” sparsity74 that is defined by the full list of virtuals {a, b}

significant to a given pair of occupied orbitals {i, j}, this yields asymptotically linear scaling
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memory requirements, and also asymptotic linear scaling of solver compute effort. All steps

are OpenMP parallel. These developments are described in the Theory and Implementation

Sections.

With a working implementation in hand, we then turn to the question of characterizing

the performance of the local MP2 algorithm in terms of memory and compute requirements

as a function of the three key variables. First is the nature of the molecule: close-packed

molecules with higher than one-dimensional connectivity pose the greatest challenge for

local correlation methods in the sense of yielding the least advantage versus a non-local

exact solution.76,77 Second is the choice of AO basis set size: larger basis sets likewise pose

greater challenges for local correlation,78 yet are crucial for enabling useful applications of

the code. Third is the target threshold for accuracy. With a sufficiently tight threshold, the

local correlation results are indistinguishable from conventional MP2. Therefore we seek the

loosest thresholds that can yield such results for energy differences. On the one hand, looser

thresholds will yield (much) faster time-to-solution, but will only be reproducible running

exactly the same algorithm. On the other hand, significantly tighter thresholds will simply

eliminate the possibility of savings in memory requirements and compute effort versus exact

MP2. We think a suitable target is 10−1 − 10−3 kJ/mol. A detailed set of calculations

exploring these factors is reported in the Results and Discussions Sections.

2 Theory

In this section, we will summarize the framework of our local MP2 theory, and the implemen-

tation details will be introduced in the next section. This paper only considers spin-restricted

closed-shell systems with frozen core orbitals for simplicity; for the energy the frozen orbitals

are simply excluded. Table 1 lists all the index notations that we are using. All equations

are given in terms of spatial molecular orbitals.
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Table 1: Notations for different orbitals and basis functions.

orbitals / basis functions indices total number

occupied orbitals i, j, k, · · · nocc

virtual orbitals a, b, c, · · · nvirt

basis functions µ, ν, · · · nbasis

auxiliary basis functions P,Q, · · · naux

The MP2 amplitude equation is

∑
i′j′a′b′

∆iji′j′

aba′b′t
ij

ab = 2J ij
ab −Kij

ab, (1)

where J ij
ab = Kij

ba = (ia|jb) are two-electron integrals and ∆ is (if using orthogonal orbitals)

∆iji′j′

aba′b′ = δii′δaa′δjj′Fbb′ − δii′δaa′Fjj′δbb′ + δii′Faa′δjj′δbb′ − Fii′δaa′δjj′δbb′ ; (2)

where F is the Fock matrix. In a gapped system, ∆ is negative definite, and its smallest

eigenvalue (in absolute value) is 2∆EHL, so a unique solution is guaranteed. The MP2

correlation energy is then obtained as the dot product of the amplitude tensor with J:

Ecorr = −
∑
iajb

J ij
abt

ij
ab. (3)

Our local MP2 theory has three components which will all be discussed in detail in the

following subsections:

1. A choice of orbital localization technique – we employ the common choice of Boys

occupied and the not-so-common choice VV-HV virtual orbitals as described below in

Sec. 2.1;
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2. A way to efficiently solve the linear system, Eq. 1 – we use a sparse “ragged list”

representation of the right-hand side, and a “fixed sparsity pattern” approach to the

solver, discussed in Sec. 2.2;

3. A way to build the significant elements of the J tensor efficiently – we use robust local

density fitting via algorithms given in Sec. 2.3

2.1 One Particle Representations - Local Occupied and Virtual

Orbitals

There are multiple ways to localize orbitals,24,79 for example, occupied orbitals can be local-

ized by the well-known Boys, Pipek-Mezey, or Edmiston-Ruedenberg methods.80–82 Widely

used sets of localized virtual orbitals include projected atomic orbitals (PAOs), orbital spe-

cific virtuals (OSVs),83 pair natural orbitals (PNOs),38,39 and many others. Our previous

work74 compared a handful of such possibilities and concluded that of those, the optimal

choice for local MP2 is to pick Boys occupied orbitals and valence virtual – hard virtual

(VV-HV) orbitals.75 This is a single set of localized orthogonal orbitals for the whole chem-

ical system, which is simple both in concept and in implementation. Also, relative to use of

PNOs or OSVs, the memory requirement to hold the J tensor is minimized.

The Boys occupied orbitals are a set of orthogonal orbitals that minimizes the following

spread functional

fB =
∑
i

〈
ϕi

∣∣(r−ri)
2
∣∣ϕi

〉
, (4)

where ri = ⟨ϕi|r|ϕi⟩. In other words, Boys orbitals minimize the sum of orbital second mo-

ments. The optimization can be carried out either by Jacobi sweeps or other techniques.84–86

While the Boys orbitals typically localize well (subject to the magnitude of ∆EHL) it should

be noted that they are not necessarily unique for a given problem.

To obtain VV-HV orbitals,75 we need to split our basis set space (B) into the direct sum
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of an adaptive minimal basis space (E) and the remaining hard virtual space (H)

B = E ⊕H. (5)

Following ref. 75, our adaptive minimal basis is composed from the union of the span of

occupied orbitals, and the span of the virtuals defined by projecting STO-3G into the work-

ing basis, and removing the occupied space. The hard virtual space contains many high

angular momentum basis functions which are essentially atom-centered although they are

not orthogonal (similar to PAOs). We then split E into the occupied space (O) and the

valence virtual space (L)

B = O ⊕ L⊕H. (6)

Here we assume that the minimal basis is able to describe the occupied space, which is

usually true. The L space is small, and can be easily localized by the Boys procedure; the

resulting valence virtuals look like antibonding orbitals.87 Our virtual space (V) is therefore

V = L ⊕H, (7)

So we collect all localized valence virtuals and hard virtuals, and then perform a locality-

preserving orthogonalization of the HVs. Our implementation basically follows Ref. 75,

but with two differences. The first one is that we do a simple weighted symmetrical or-

thogonalization of the hard virtuals based on the inverse of their spatial spread instead of

the “important class” technique in the original paper. The second difference is we further

pseudo-canonicalize the hard virtuals atom by atom. As we will see later in Sec. 4.4, this

pseudo-canonicalization is very beneficial when we want to use larger basis sets (Sec. 4.4).

For calculations using extended AO basis sets, particularly those containing diffuse func-

tions, and for molecules with close-packed 3-d structures, ill-conditioning in the AO overlap
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matrix associated with near-linear dependence will occur.77,78 To manage this challenge, we

employ the same linear-dependence threshold (∼ 10−7 − 10−8 for double precision computer

arithmetic) that is used to drop eigenvectors whose eigenvalues are below the threshold via

canonical orthogonalization.88 However, to accommodate the VV-HV scheme, we drop indi-

vidual atomic orbitals one by one based on selecting the AO with largest amplitude in the

eigenvector belonging to the smallest eigenvalue, and repeating until the smallest eigenvalue

of the overlap matrix built with the remaining basis functions is above the threshold. To

ensure the MP2 correction is well-defined, the same orthogonalization procedure is also used

for the preceding SCF calculation.

2.2 Ragged List Representation and Fixed Sparsity Pattern Ap-

proximation

A local representation of the J tensor is central to local MP2 theory. As already pointed

out in the introduction, there are multiple ways to represent the J tensor in an O(A) way,

including the PAO/PNO approach and the PAO/OSV approach. In our prototyping paper,74

we have shown that the “ragged list” representation actually is the most memory efficient

one. The ragged list representation exploits all the numerical sparsity of J tensor, meaning

that we store every (ia|jb) element in J if

∣∣J ij
ab

∣∣ > ϵ or
∣∣Kij

ab

∣∣ > ϵ, (8)

where ϵ is the threshold. In practice, this is done by storing all significant a, b index pairs

and their J ij
ab values for every i, j index pair.

To solve the linear equations, Eq. 1, of MP2, we introduce an approximation called

“fixed sparsity pattern”, which means that we require the solution t tensor to have exactly

the same sparsity pattern as the J tensor. In other words, we remove the rows and columns
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in ∆ which corresponds to every (numerically) zero element in 2J − K (Figure 1). The

error from the fixed sparsity pattern has been proven highly controllable in a wide range of

molecules.74 Because we have only O(A) elements on the right-hand side and the truncated

∆ matrix still has some sparsity, it is possible to solve the MP2 equation with linear scaling

computational effort. Conjugate gradient (CG, with a diagonal preconditioner) can be used

since the truncated ∆ remains negative definite.

Figure 1: The “fixed sparsity pattern” approximation. Stars stand for known elements and dots
for unknowns.

After the solution t is converged, we define t′ such that

tijab = 2t′
ij
ab − t′

ij
ba, (9)

The correlation energy is then calculated as

Ecorr = −t′ · (2J −K)− t′ · r, (10)

where r is the residual vector at the end of the conjugate gradient algorithm; i.e.,

∆t = (2J −K)− r. (11)

This expression corresponds to the Hylleraas functional, so the energy error is quadratic

in terms of r, meaning that a loose convergence threshold can be used to solve the MP2

equation. The seemingly redundant symmetric truncation in Eq. 8 is needed because other-
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wise, the Hylleraas functional provides a different correlation energy under the fixed sparsity

pattern.

2.3 Building the J Tensor

The remaining question is how to build the J tensor efficiently. For clarity, we adopt the

language of “sparse maps” introduced in Ref. 42. A sparse map

A → B (12)

means each element of A has a list of corresponding B. For example, an i → a sparse map

stores different lists of virtual orbitals linked to each occupied orbital. Sparse maps can be

inverted: a B → A sparse map can be constructed from an A → B sparse map. Multiple

sparse maps can also be concatenated, meaning that putting two sparse maps A → B and

B → C together we can define A → C = A → B → C.

Looking at the definition of (ia|jb),

(ia|jb) =
∫

dr1

∫
dr2

i(r1)a(r1)j(r2)b(r2)

|r1−r2|
, (13)

we know that (ia|jb) will be small if i is far away from j, or i is far away from a, or b is

far away from j. So, two sparse maps, i → j and i → a, are necessary. Notice that i, a are

linear combinations of basis functions µ, so we need i → µ and a → µ. Finally, local density

fitting must be used in order to generate all required J elements in O(A) time, so i → P is

also needed. In total, we need five basic sparse maps, and there could be multiple ways to

construct each of them. We will describe our choice later in the implementation section.
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The robust local density fitting uses the local fit coefficients

CP
ia =

∑
i→Q

VPQ (ia|Q) ; (14)

here V is the inverse of (P |Q) submatrix where i → P, i → Q. The expression for the J

tensor elements is

(ia|jb) = −
∑

i→P, j→Q

CP
ia (P |Q)CQ

jb +
∑
i→P

CP
ia (jb|P ) +

∑
j→Q

CQ
jb (ia|Q) , (15)

so we need to compute and store:

1. all (ia|P ) if i and P can be connected through j: i →→ P = i → j → P ;

2. all CP
ia but only when i and P are directed connected: i → P .

Sparse maps with ”→→” are called extended sparse maps. Notice that in this way, we

will use the same list of P in both (ia|P ) and CP
ia for all virtual orbitals connected to i.

Then, for each i, j pair, we can construct elements in the J ij block, filter, and store the

significant indices and integral values in the ragged list representation. This formalism is

robust in the sense that the error in (ia|jb) is quadratic in terms of the incompleteness of

the fitting domain i → P .

The entire integral assembly part can be done linear-scalingly. Asymptotically, onlyO(A)

number of J ij blocks need to be computed (by i → j), and in each block, we only compute

a constant number of (ia|jb) integrals (by i → a). Every integral takes asymptotically

constant time to evaluate because the length of i → P is asymptotically constant. For the

same reason, obtaining CP
ia should take O(A) time. Computing all required (ia|P ) also scales

linearly because the number of the required (µν|P ) is constant for every (ia|P ) integral (by

i → µ and a → µ).
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We have a couple of different thresholds in our local MP2 formalism: the main threshold

ϵ for J , the CG threshold, and the thresholds in the five basic sparse maps. In the next

section, we will link all other thresholds to ϵ, such that the accuracy of our algorithm is

easily controllable by a single parameter ϵ supplied by the user.

3 Implementation

In this section, we present the implementation details on how we perform the conjugate

gradient iterations and how we build J by local density fitting.

3.1 Conjugate Gradient Iterations

We use the standard conjugate gradient algorithm with a diagonal preconditioner (i.e., Jacobi

preconditioner) to solve the linear system. In the code, we store J in the following way:

1. (main part) for each i, j pair, we store the integral (ia|jb) and the anvirt + b value of

each J ij
ab element kept;

2. (transposed part) for each a, b pair, we store the inocc + j value and the position of

(ia|jb) in the vectorized J tensor of each J ij
ab element kept.

The tensor is vectorized by putting elements with the same i, j together. Since the J tensor

is symmetric, we only need to store and manipulate the upper half of it, saving us about

50% memory requirements and computation time.

In our framework, the slowest part of the CG iteration is the matrix-vector multiplication

algorithm – the way to calculate ∆t. The pseudo-code is shown in Algorithm 1. It can be

easily OpenMP parallelized by adding relevant compiler directives (#pragma omp parallel

for schedule(dynamic)) to the loops in the 2nd and 9th lines. The actual calculation of ∆t is
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in lines 6 and 13, and the number of FLOPs is

2
∑
i,j

[∑
a0

|va|2 +
∑
b0

|vb|2
]
+ 2

∑
a,b

[∑
i0

|vi|2 +
∑
j0

|vj|2
]
, (16)

where | · | means the length of a list. The first sum comes from the for loop in line 2, and the

second sum comes from the for loop in line 9. In the first sum, as the number of significant

j for each i and the cardinal number of a, b list for each significant i, j pair both become

constant when the system size is large, the FLOP count is linear-scaling. A similar argument

holds for the second sum, so overall this algorithm scales linearly with respect to system size.

Since preconditioned conjugate gradient needs 5 copies of the vector, together with 3

index tensors and 1 integral tensor, the memory requirement is 9 copies of the J tensor.

With the help of the Hylleraas functional, we can converge our CG to a relatively loose

threshold, namely ∥r∥ < 2.5
√
ϵ, where r is the residual vector and ϵ is the threshold for J .

3.2 Local Density Fitting

As already introduced in Sec. 2.3, we need five basic sparse maps: i → j, i → a, i → P ,

i → µ, and a → ν. There are multiple choices for each of these sparse maps, and we will

briefly explain our choice below. A detailed example analysis of choosing all the thresholds

can be found in the SI. Notice that our main threshold for the J tensor is ϵ.

1. i → j: determined by pair uFERF interaction energies with threshold 10−2ϵ.

This is used to determine whether or not i, j are far enough away from each other

such that their pair correlation energy can be neglected. This could be estimated

by the dipole-dipole interaction in the multipole expansion. We choose to use dipole

uFERF orbitals to estimate the pair correlation energy, because the compressed form

of dispersion interactions look like uFERF orbitals.29,89 Because the uFERF estimation
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Algorithm 1 A linear-scaling algorithm to compute ∆t

1: initialize the output vector (∆t)out = 0

2: // first and third terms in Eq. 2

3: for each i, j pair whose anvirt + b list is not empty do

4: break the anvirt + b list into a list and b list

5: // for example, if nvirt = 3, anvirt + b list {0,2,3,4} will become a list {0,0,1,1} and

b list {0,2,0,1}
6: for each unique element a0 in a list do

7: // the first term

8: find the positions in the vectorized tensor of all elements equal to a0 in a list and

store them in a vector va

9: find the corresponding b of those positions and store them in vb

10: (∆t)out (va)+ = Fvirt(vb, vb)t(va)

11: end for

12: do lines 6-11 with a, b swapped // the third term

13: end for

14: // second and fourth terms in Eq. 2

15: for each a, b pair whose inocc + j list is not empty do

16: break the inocc + j list into i list and j list

17: for each unique element i0 in i list do

18: // the second term

19: find the positions in the vectorized tensor of all elements equal to i0 in i list and

store them in a vector vi

20: find the corresponding j of those positions and store them in vj

21: (∆t)out (vi)− = Focc(vj, vj)t(vi)

22: end for

23: do lines 17-22 with i, j swapped // the fourth term

24: end for
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undershoots the real pair correlation energy (Figure S3 in the SI) and the error is also

accumulative, we choose a tight threshold of 10−2ϵ here.

2. i → a: determined by the 1s-Slater-orbital-approximation of the integral
∫
i2a2dr with

threshold 10−3.

This map determines significant virtual orbitals for a certain occupied orbital. The

value of the differential overlap integral
∫
i2a2dr has been shown to be of the same

magnitude as the Schwarz integral (ia|ia).42 The latter can be used to control (ia|jb)

effectively:

(ia|jb) ≤
√

(ia|ia) (jb|jb). (17)

A numerical integration scheme is required to accurately calculate
∫
i2a2dr, but here

we apply a very crude approximation to estimate the differential overlap integral: based

on the orbital variance
〈
ϕi

∣∣(r−ri)
2
∣∣ϕi

〉
, we reduce i, a to 1s Slater orbitals e−λ|r−r|,

and then calculate
∫
i2a2dr. Unfortunately, this estimator is not effective when i, a

are far away, so we choose a rather loose fixed threshold 10−3, and use the extended

sparse map i → j → a = i →→ a instead of i → a to determine the significant virtual

orbitals for i.

3. i → P : determined by the 1s-Slater-orbital-approximation of integral
∫
i2P 2dr with

threshold 102ϵ2.

This map determines the local density fitting domain of every occupied orbital. Similar

to the previous map, we use the crude approximator to estimate the differential overlap

integral. A tight threshold is needed for an accurate result, and now we pick 102ϵ2 such

that the error in Ecorr caused by local density fitting and the fixed sparsity pattern

is similar. Other possibilities could be Mulliken population, center-to-center distance,

and others.
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4. i → µ, a → ν: determined by the coefficient matrix with threshold 10−3.

These two sparse maps are used when we compute (µν|P ) and then transform to

(ia|P ). A fixed value can be chosen since this does not heavily affect the efficiency and

the quality of the result (Figure S6 in the SI). Notice that a truncation threshold of

10−3 means that in the localization step, we do not need to converge the Boys and the

valence part of the VV-HV orbitals very tightly. Actually, as most quantum chemistry

packages process integrals in terms of shells instead of single basis functions, we use

slightly different i → P, i → µ, a → ν sparse maps, which use lists of shells instead of

lists of single basis functions: i → Psh, i → µsh, a → νsh.

Our local density fitting algorithm can be decomposed into three steps: building (ia|P ),

computing CP
ia, and assembling (ia|jb). To maximally utilize BLAS-3 subroutines, we use

matrices to store (ia|P ) and CP
ia – for each i, the row dimension of the matrix is the length

of i →→ P list (for (ia|P )) or i → P list (for CP
ia) and column dimension is the length of the

i →→ a list. Also, all Psh of the same atom are batched together when computing (ia|P ).

Eq. 15 in Sec. 3.2 suggests that we need to compute (µν|P ) if

P → Psh →→ i → µsh → µ and P → Psh →→ i →→ a → νsh → ν. (18)

Note the ”double extension” in the second list, which is necessary to get the correct an-

swer. Alg. 2 shows the pseudo-code for building the J tensor, where Cocc(A → P sh →→

i, A → P sh →→ i → µsh → µ) means we pick out the submatrix of Cocc with rows in the

A → P sh →→ i list and columns in the A → Psh →→ i → µsh → µ list. Alg. 2 can be

OpenMP parallelized by adding OpenMP directives to lines 1, 8, and 13.
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Algorithm 2 Building J tensor using local density fitting

1: for every atom A do

2: Compute integrals (µν|P ) where µsh that are connected by A→ P sh →→ i → µsh

and νsh that are connected by A → P sh →→ i →→ a → νsh

3: Pick submatrix of the coefficient matrix: Cocc(A → Psh →→ i, A → Psh →→ i →
µsh → µ) and Cvirt(A → P sh →→ i →→ a,A → P sh →→ i →→ a → νsh → ν)

4: for every P in A → P sh → P do

5: Transform (µν|P ) into (ia|P ) by two dense matrix multiplications

6: select (we have made more than we needed) and store the integrals

7: end for

8: end for

9: // computing CP
ia

10: for every i do

11: Compute the inverse of (P |Q) submatrix V where i → P, i → Q

12: Find the position of all P of i → P in i →→ P

13: CP
ia =

∑
i→Q VPQ (ia|Q)

14: end for

15: // assemble to get the J tensor

16: for all i, j pair do

17: Find the positions of all P of i → P in the Q list of j →→ Q and the positions of all

Q of j → Q in the P list of i →→ P

18: (ia|jb) = −
∑

i→P,j→Q CP
ia (P |Q)CQ

jb +
∑

i→P CP
ia (jb|P ) +

∑
j→Q CQ

jb (ia|Q)

19: Filter elements and store the numerically significant ones in the ”ragged list” data

structure introduced in Sec. 2.1

20: end for
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3.3 Summary of the Algorithm

A brief summary of our local MP2 scheme is in Algorithm 3. Although we have seven different

thresholds in our algorithm (the main threshold ϵ, the CG threshold, and five thresholds for

five basic sparse maps), we have either fixed or linked all other six thresholds to the main

threshold ϵ, such that the accuracy of our algorithm can be easily controlled by a single

input parameter.

Algorithm 3 Local MP2

1: Localize molecular orbitals (Boys occupied orbitals and VV-HV virtual orbitals)

2: Construct five basic sparse maps i → j, i → a, i → P, i → µ, a → ν and all other required

sparse maps

3: Build the J tensor with local density fitting (Algorithm 2)

4: Use CG to solve the local MP2 equation (with mat-vec function in Algorithm 1)

5: Evaluate the Hylleraas functional Eq. 10 to obtain Ecorr

4 Results and Discussion

In this section, we will characterize our local MP2 scheme in a few different ways. We

first discuss how the threshold ϵ affects accuracy (the error in correlation energy and the

error of energy difference between molecules), timing, and memory requirement. We then

briefly show our OpenMP parallel efficiency, the performance of this algorithm with different

basis sets, and the smoothness of the potential energy surface. All jobs are done on a local

workstation with two 8-core Intel Xeon Silver 4110 CPUs and 64 GB memory. A development

version of Q-Chem 6 is used,90 and all calculations are done with the def2-TZVP basis set,

frozen core, and 16 threads OpenMP, unless otherwise specified. The geometries of all

molecules can be found in the SI.
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4.1 Threshold and Accuracy

In our prototyping paper,74 we showed that the error caused by the fixed sparsity pattern

is linear with respect to ϵ, both in linear systems and 3-D molecules. This is still true

when we also include errors associated with local density fitting. Figure 2 plots the absolute

correlation energy error of linear alkane chains.

Figure 2: The fractional error in the def2-TZVP basis correlation energy of the local MP2 scheme
compared with canonical MP2 for linear alkane chains CnH2n+2. Three different thresholds ϵ are
used for the local correlation calculations.

It can be seen that the error of our local MP2 scheme is highly controllable by the

threshold ϵ: ϵ = 10−5 can recover 99.9% of canonical MP2 correlation energy, and ϵ = 10−7

can recover more than 99.999%. To understand the performance of our algorithm for relative

energies, i.e., chemical reactions, we computed the conformational energy of 21 conformers

of C20H42 relative to the all-trans conformer (0 in Figure 3), using the ACONF20 molecule

set by Ehlert et al.91 Figure 3 briefly summarizes the molecule set, and Table 2 presents the

statistics of the error in conformational energy of our method under a different threshold,
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compared with the canonical MP2 numbers.

Figure 3: Some representative molecules from the 21 C20H42 conformers contained in the
ACONF20 data set. The 00 conformer has the lowest energy. We calculate the conformational
energy relative to the all-trans conformer 0.

Table 2: Error statistics (in kJ/mol) for the relative conformational energies of the ACONF20
molecule set between local and canonical MP2 under different thresholds, ϵ. Statistics include
maximum deviation (MAX), mean absolute (signed) error (MAE), and root mean square deviation
(RMSD).

Threshold 10−5 10−5.5 10−6 10−6.5 10−7

MAX 5.94 1.88 0.49 0.18 0.05

MAE 2.66 0.83 0.23 0.06 0.02

RMSD 3.09 0.97 0.26 0.08 0.02

In Table 2, it can be seen that the goal of 0.1 kJ/mol relative energy goal is safely reached

with a 10−7 threshold. Even 10−6.5 is sufficient most of the time. The accuracy is, again,

generally linear with respect to ϵ. The conformational energy differences in the ACONF20

set range between roughly 5 and 20 kJ/mol. Therefore a 3 kJ/mol error, which is the RMSD

with ϵ = 10−5 is very large. We see that in this case, local MP2 with ϵ = 10−5 would not be

useful at all, even though it recovers about 99.9% of the correlation energy.
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It is worth recalling that all errors in the absolute correlation energy are one-sided –

our local MP2 always underestimates the correlation energy (destabilizing the molecule)

and that all conformational energy errors in ACONF20 set are also one-sided – our local

MP2 destabilizes compact conformers more. The former is the nature of the fixed-sparsity

pattern: we ignore some i, a, j, b combinations, which have negative energy contribution

most of the time. The latter could be explained by truncating more (ia|jb) elements that

are close to the threshold when the system is more compact. We will see this effect again in

the next subsection, when we find that our local MP2 performs less ideally on very compact

systems such as fullerene. Therefore, when using this algorithm to compute relative energies,

relative local correlation error will be smallest for a given cutoff when there are no drastic

conformational changes. Otherwise, as this ACONF20 data demonstrates, the user must

employ a tighter threshold to ensure adequate precision in the energy differences.

4.2 Timing and Memory Requirement

To see the crossover between our local MP2 and RIMP2 at different ϵ, we plot the timing

and memory requirement of linear alkane chains in Figure 4. The memory requirement of

RIMP2 and ϵ = 10−7 local MP2 exceeds the total memory of the computer (64 GB) at

C70H142. It is clear in Figure 4 that the timing and memory requirement is linear with

respect to the system size after C30H62, and that even with the tightest threshold ϵ = 10−7,

we see a crossover in timing between C50H102 and C60H122.

Table 3 presents a more detailed timing analysis for C40H82 for different ϵ. The memory

requirement is always controlled by the solver, since CG requires 5 copies of the ragged list

J tensor. When ϵ is made 10 times smaller, the memory requirement becomes 2.5 times

bigger. The timing, however, is only dominated by the solver part when ϵ ≤ 10−6.5. More

than 80% of the time in local DF is used to build the (ia|P ) tensor, while the mat-vec

function (Algorithm 1) takes most of the wall time in the solver. When ϵ is made 10 times
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Figure 4: The MP2 (a) wall time and (b) memory requirement for def2-TZVP linear alkane chains
CnH2n+2 under different local MP2 threshold ϵ.

Table 3: The detailed wall time breakdown, memory requirement, percentage of significant oc-
cupied orbital pairs, and fractional correlation energy error for def2-TZVP linear C40H82 using
different local MP2 thresholds, ϵ. Time is in seconds, and memory requirement is in gigabytes
(GB).

Threshold RIMP2 10−4.5 10−5 10−5.5 10−6 10−6.5 10−7 10−7.5

Significant i, j
Pair (%)

100 23.4 30.5 36.0 42.7 49.6 58.2 67.3

Fractional Ecorr

Error (‰)
0 3.335 0.839 0.211 0.059 0.016 0.005 0.001

Wall Time

Total 964 215 309 482 834 1636 2757 5203

LDF 158 181 202 226 248 271 296

ERI 21 42 74 129 212 339 542

Solver 32 82 201 474 1171 2142 4359

Local DF Mem Req 5.9 6.7 7.4 9.3 12.1 15.9 22.5

Solver Mem Req 5.9 6.7 8.6 13.7 19.7 30.7 46.3
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smaller, the total wall time roughly triples but the solver time increases by 400%, which can

be attributed to the locally quadratic nature seen in Eq. 16.

Figure 5: Testing 3-D molecules: (a) anthracene dimer, (b) ATP4−, (c) sildenafil, (d) fullerene,
(e) vancomycin, and (f) crambin.

We have also tested our methods on several 3-D molecules (Figure 5) and the results are

shown in Table 4. We use the def-SV(P) basis set for fullerene, vancomycin, and crambin,

and those molecules were run on a NERSC Perlmutter node with two 64-core AMD EPYC

7763 CPUs and 512 GB RAM. Since the molecules are not large (except for vancomycin and

crambin, and we do not have enough RAM to run RIMP2 for crambin), local MP2 takes

more time than RIMP2. The error in correlation energy is still about 0.1% when ϵ = 10−5,

consistent with the findings in Sec. 4.1. However,in the anthracene dimer and fullerene,

which are small and compact systems, the error is larger. In 3-D systems, when ϵ decreases

10-fold, we see a 3-fold to 4-fold increase in the memory requirement, higher than the sparser

extended linear alkane chain system. The ratio of computing time between ϵ = 10−6 and

ϵ = 10−5 is therefore also higher, at around 4 to 5.

4.3 OpenMP Parallel Efficiency

We have conducted a strong scaling analysis and a weak scaling analysis to understand the

efficiency of our OpenMP parallel implementation. All jobs in this section were performed

using a single 128 core node (2 AMD 7763 chips) on the NERSC Perlmutter machine.
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Table 4: The detailed wall time breakdown, memory requirement, and fractional correlation energy
error for some 3-D molecules using thresholds ϵ = 10−5, 10−6. Time is in seconds, and memory
requirement is in gigabytes (GB). The def2-TZVP basis set is used except for fullerene, vancomycin,
and crambin, where def2-SV(P) is used. Fullerene, vancomycion and crambin were run 32-threaded
on a NERSC Perlmutter node, while others were run 16-threaded on a workstation.

Anthracenes ATP4− Sildenafil Fullerene Vancomycin Crambin

Threshold 10−5 10−6 10−5 10−6 10−5 10−6 10−5 10−6 10−5 10−6 10−5

Fractional Ecorr

Error (‰)
2.91 0.18 1.31 0.08 1.58 0.10 3.87 0.25 0.92 0.07 –

RIMP2 Wall Time 120 187 300 20 514 –

LMP2
Wall Time

Total 589 2712 413 1612 586 2328 102 355 115 467 2195

LDF 175 180 142 147 211 228 15 16 44 52 1152

ERI 197 295 134 301 201 458 55 90 55 295 957

Solver 215 2234 137 1133 165 1527 33 249 15 119 83

Solver Mem Req 7.1 25.0 6.4 19.3 7.2 22.5 13.4 51.2 13.5 40.6 54.7

Figure 6: (a) Strong scaling and (b) weak scaling local MP2 wall time analysis of OpenMP parallel
efficiency. Systems used are C160H322 for strong scaling and for weak scaling, C20H42, C40H82, · · ·,
to C220H442 using 2 to 22 threads, respectively. Threshold ϵ = 10−6, and basis set is def2-TZVP.
These jobs are run on a NERSC Perlmutter node.
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C160H322 was used for the strong scaling analysis, and we varied the number of OpenMP

threads from 2 to 32. The sequence of molecules, C20H42, C40H82, · · ·, to C220H442 were used

for weak scaling analysis, with 2 to 22 threads, respectively. We encountered SCF issues

for larger jobs. The def2-TZVP basis was used for all jobs, and a threshold of ϵ = 10−6

was employed for local MP2. Ideally, in the strong scaling analysis, the timing should be

inversely proportional to the number of threads, while in the weak scaling analysis, the wall

time should ideally be the same in each case.

Figure 6 plots the result. In the strong scaling analysis, we see that by using 32 threads,

the wall time decreases by a factor of 12 compared with a 2-thread run. This indicates a

satisfactory overall parallel efficiency of roughly 75% for this range of threads. In the weak

scaling test, we do not see a flat line. The jump in the solver time from C140H282 to C160H322

is because the number of iterations increases by one. Other than that, we see generally flat

lines in all three parts of the algorithm, resulting in a mildly increasing total time curve.

C20H42 is an outlier because it is not in the linear region for ϵ = 10−6, and the LDF curve

stabilizes later than the other two components as the doubly extended map (Eq. 18) becomes

linear-scaling later than the other parts of the algorithm. Also, some small non-linear parts

of the algorithm (for example, the building of all sparse maps and Focc, Fvirt) can contribute

to the slight increase in the weak scaling time. Overall, the parallel efficiency is satisfactory,

and helps enable the evaluation of large jobs.

4.4 Basis Set Transferability

In this subsection, we discuss the transferability of our results to other basis sets. Figure 7

plots the memory requirement and the wall time for C30H62 using several different Karlsruhe

def2- series basis set with ϵ = 10−6. Naturally, a bigger basis set requires more time and

memory. Fortunately adding diffuse functions does not seem to affect the performance of

our algorithm. The fractional error of all calculations (Table 5) is under 0.01%, which is
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Figure 7: The timing and memory requirement for local MP2 of C30H62 with different basis sets.
Threshold ϵ = 10−6. The def2- basis sets are used; i.e., “SV(P)” means the def2-SV(P) basis set.

consistent, but a larger basis set tends to have a larger error. Table 6 shows the sparsity

of (ia|P ), CP
ia, and (ia|jb) tensors of vancomycin using different basis sets with ϵ = 10−5.

Encouragingly, we keep about the same fraction of the three-index tensors, regardless of

whether we add diffuse functions to our basis or not. The fraction of significant elements in

(ia|jb) decreases when the basis is bigger, suggesting that in correlation methods which must

store the full amplitude tensor (e.g., CCSD), the local version will have a better memory

footprint in bigger basis sets well before the linear scaling regime.

Table 5: The fractional correlation energy error between local and canonical MP2 and the number
of local MP2 CG iterations of C30H62 with different basis sets. Threshold ϵ = 10−6. The def2- sets
of basis functions are used; i.e., a “SV(P)” code means def2-SV(P) basis set. The original VV-HV
set corresponds to the definition introduced in Ref. 75, while the canonicalized VV-HV set has
hard virtuals on each atom pseudo-canonicalized.

Basis SV(P) SVPD TZVP TZVPD TZVPP

Fractional Ecorr Error (‰) 0.020 0.032 0.047 0.066 0.075

# of
Iterations

Original VV-HV 5 7 15 17 17

Canonicalized VV-HV 5 6 7 10 9
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Table 6: The fractional of significent i, j pair, (ia|P ), CP
ia, and (ia|jb) elements in vancomycin with

different basis sets. Threshold ϵ = 10−5. The def2- sets of basis functions are used; i.e., a “SV(P)”
code means def2-SV(P) basis set.

Basis SV(P) SVPD TZVP TZVPD

Fraction

Significant

(%)

i, j Pair 39.1 40.9 40.3 40.4

(ia|P ) 36.4 37.9 37.4 37.2

CP
ia 8.4 10.7 8.5 10.2

(ia|jb) 0.169 0.128 0.076 0.078

The number of iterations, which is crucial to the efficiency of the solver, gradually in-

creases when a larger basis set is used. The reason might be that to meet the threshold

requirement of the residual r, a longer vectorized J tensor requires smaller element-wise

error, which in turn requires more iterations. Also, in the Fock matrix, large off-diagonal

values make the linear system deviate further from a diagonal system, meaning that our

diagonal preconditioner will be less effective and therefore more iterations may be needed.

If we use the original VV-HV orbitals as in Ref. 75, hard-virtuals on the same atom tend to

have large off-diagonal values (Figure 8(b)), so the number of iterations needed goes much

higher for the TZ basis set. After an atom-wise pseudo-canonicalization of the hard-virtuals,

we make the Fock matrix more diagonal (Figure 8(a)) without losing much sparsity, and

therefore, the number of iterations goes down by a large fraction. The fraction of (ia|jb)

elements kept and the fractional correlation energy errors are almost the same when using

these two versions of the VV-HV orbitals.

4.5 Smoothness of the Potential Energy Surface

One of the drawbacks of many local correlation methods is that the potential energy sur-

face ceases to be smooth and differentiable due to all the non-negligible truncations in the

algorithm. Therefore, properties that depend on the (numerical) gradient will be much less
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Figure 8: The magnitude of all elements in the Fock matrix of def2-TZVP C6H14 with (a) pseudo-
canonicalized VV-HV and (b) original VV-HV. Original VV-HV set corresponds to the orbital in
Ref. 75, and canonicalized VV-HV set have hard-virtuals on each atom pseudo-canonicalized.

Table 7: The dipole vector and the polarizability tensor calculated from numerical differentiation
for def2-TZVP ATP4−. Step length 0.001 a.u.

Threshold RIMP2 10−5

Dipole (29.3099,−2.0215, 2.6170) (29.3169,−2.0305, 2.6319)

Polarizability


347.084 −0.656 43.598

−0.656 190.929 8.311

43.598 8.311 292.062




347.005 −2.988 47.810

−2.988 173.941 18.930

47.810 18.930 289.684


Threshold 10−6 10−7

Dipole (29.3117,−2.0203, 2.6201) (29.3103,−2.0213, 2.6175)

Polarizability


345.256 0.231 44.969

0.231 189.988 9.152

44.969 9.152 289.050




347.582 0.409 44.448

0.409 191.037 8.782

44.448 8.782 291.331


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Figure 9: The potential energy surface and numerical energy derivative and second derivative
of def2-TZVP C20H42 rotating the (a) C1-C2-C3-C4 dihedral angle under different threshold ϵ =
10−5, 10−6, 10−7. Energies are relative to the all-trans conformer, where the dihedral angle is 180°.
Step length 2 degrees. 31



accurate, limiting the value of the local method for solving chemical problems. The numer-

ical precision issue may be even more acute for second derivative properties such as force

constants. The appropriate choice of truncation threshold should therefore be tested on some

chemically relevant examples.

For this purpose, we tested the smoothness of our algorithm for a torsional potential

energy surface of C20H42 with ϵ = 10−5, 10−6, 10−7. We varied the central C1-C2-C3-C4

dihedral angle as shown in Figure 9)(a). Panels (b1,c1,d1) plots the potential energy surface

relative to the all-trans conformer (180° dihedral angle), which has the lowest energy. Since

our local MP2 destabilizes molecules, we typically overestimate the conformational energy

difference. The error is within 0.5 kJ/mol, 0.06 kJ/mol, and 0.007 kJ/mol for ϵ = 10−5, 10−6

and 10−7, respectively. The energy error is better than the performance in ACONF20 since

the conformational differences between members of the ACONF20 set are more drastic and

tend to create more errors. For the numerical energy derivative (steplength 2°), the surface in

Figure 9(b1) is close to the RIMP2 reference line but visually rough, and the result improves

gradually when ϵ decreases. The average (absolute) error goes from 0.1 kJ/(mol °) when

ϵ = 10−5 to 0.03 kJ/(mol °) for ϵ = 10−6, and then to 0.005 kJ/(mol °) for ϵ = 10−7.

The speed of improvement in the energy derivative is slower than the speed of improvement

in energy. Panels (b3,c3,d3) plot the performance in the energy second derivative. The

ϵ = 10−5 result is far away from the RIMP2 reference, improving by roughly a factor of 3

when ϵ = 10−6, and another factor of 7 when ϵ = 10−7.

As a second test of another class of derivative properties, we also calculated the dipole

vector and the polarizability tensor for ATP4− (Table 7). We evaluated the first and second

electric field derivatives numerically, using a step length of 0.001 a.u.92,93 The ϵ = 10−5

dipole moment is correct to about 0.1 a.u., and an extra significant figure can be gained by

tightening ϵ to 10−6 and 10−7. The ϵ = 10−5 polarizability has a very large error - the largest

error is about 17 a.u. in αyy. A significant improvement can be seen when using the 10−6
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threshold, as all elements are within 2 a.u., another 10 times smaller ϵ gives a maximum

matrix element error of 0.7 a.u.

Summarizing this section, a loose threshold ϵ = 10−5 gives a visually good potential en-

ergy surface and marginally usable numerical energy derivatives, but unacceptable numerical

second derivatives. ϵ = 10−6 nicely cleans up the first derivative properties but is still not

adequate for second derivatives. Only when a strict threshold ϵ = 10−7 is used can we obtain

a useful numerical second derivative.

5 Conclusions

To sum up, using Boys occupied orbitals and local orthogonal virtual orbitals (Boys valence

virtuals and atomically pseudo-canonicalized hard virtuals), we designed and implemented

a local MP2 algorithm based on fixed sparsity pattern and local density fitting. As a key

feature, our framework only requires a single input parameter, the J tensor truncation thresh-

old, ϵ. The error of our algorithm varies linearly with respect to ϵ: our local MP2 is generally

able to capture 99.9% of the canonical RIMP2 correlation energy at ϵ = 10−5 and 99.999% of

correlation energy at ϵ = 10−7. We tested our method on the ACONF20 benchmark set, and

the difference between the LMP2 and RIMP2 conformational energy can also be easily con-

trolled by ϵ: ϵ = 10−5 gives a discrepancy of about 3 kJ/mol, and ϵ = 10−6.5 is able to keep

the error below 0.1 kJ/mol most of the time. Our algorithm is linear-scaling with respect to

system size both in the wall time and in the memory requirement (although there are some

small non-linear scaling steps). The shared memory OpenMP parallel efficiency is good but

not perfect. The precision considerations and parallel performance can be transferred to

other bigger or smaller basis sets.

For a torsional potential energy scan, the surface is visually smooth, and the numerical

derivative may be acceptable when ϵ = 10−5, and is significantly improved with ϵ = 10−6.
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A numerical second derivative calculation needs a tighter threshold ϵ = 10−7 to produce

meaningful results. With care, our algorithm can be successfully deployed with a threshold

that produces enough significant figures that it is a direct replacement for conventional MP2

in practice. We emphasize that the appropriate choice of ϵ is critical to achieving useful

precision (i.e. adequately approximating MP2) and good performance (i.e. much lower

compute cost than MP2) at the same time. Our examples provide some guidance in this

tradeoff, as well as clearly revealing that the optimal ϵ is application-dependent. As computer

resources improve, it should be possible to choose ϵ more conservatively to ensure too much

precision rather than too little.

Beyond its deployment for large-molecule chemical applications, there is considerable

scope for further development of the ideas presented here. One important and non-trivial

next step is to develop a distributed memory implementation of our algorithm. A strong

motivation is that sufficient memory is a requirement to run our algorithm, and that re-

quirement increases steeply with tighter thresholds to easily exceed the single-node memory

limit. Distributed computing also opens the door to larger molecules where the speedups

relative to exact MP2 will still be larger. Another very desirable extension is to adapt our

local correlation algorithm to implement local MP3 and CCD/CCSD. While considerable

additional development is needed, our amplitude solver code can be reused without many

modifications, and the same is true for much of the integral assembly algorithm. In addi-

tion, we can more readily implement other promising variations of MP2, such as regularized

MP2,94,95 for applications to large molecules. Additionally, a closer look at the numerical

gradient of our local MP2 energy may also be useful, as the analytical gradient should be

viable to implement given that its accuracy can be assured.
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